题目大意:
  若一个十进制数$x$(不含前导零)满足数码$i$恰好出现$t_i$次,则这个数是坏的,否则是好的。求区间$[L,R](1\le L,R\le10^{18})$中有多少好数。

思路:
  显然可以将区间$[L,R]$拆成$[1,R],[1,L)$分别计算。考虑计算区间$[1,n]$中好数的个数,可以用类似数位DP的方法,对于长度与$n$相等的情况枚举与$n$的LCP和LCP前的数字,否则枚举长度及首位数字直接计算。当限制不存在时,显然可以通过组合数计算答案。加上限制可以用容斥来计算,极限数据时间复杂度约$O(2^{10}\cdot18\cdot10\cdot18)$。

 #include<cstdio>
#include<cctype>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int B=,M=;
int t[B],tmp[B],dig[M],spc[B];
int64 C[M][M],pow[B+][M];
inline int64 calc(int l) {
int64 ret=;
for(register int i=;i<=spc[]&&l>=;i++) {
if(tmp[spc[i]]<) return ;
ret*=C[l][tmp[spc[i]]];
l-=tmp[spc[i]];
}
ret*=pow[-spc[]][l];
return ret;
}
inline int64 count() {
int64 ret=;
for(register int i=;i<B;i++) tmp[i]=t[i];
for(register int i=;i<=dig[]-;i++) {
for(register int j=;j<B;j++) {
tmp[j]--;
ret+=calc(i-);
tmp[j]++;
}
}
for(register int i=dig[];i;i--) {
for(register int j=i==dig[];j<dig[i];j++) {
tmp[j]--;
ret+=calc(i-);
tmp[j]++;
}
tmp[dig[i]]--;
}
ret+=calc();
return ret;
}
inline int64 solve(int64 n) {
if(!n) return ;
for(dig[]=;n;n/=) dig[++dig[]]=n%;
int64 ret=;
for(register int i=;i<<<B;i++) {
for(register int j=spc[]=;j<B;j++) {
if((i>>j)&) spc[++spc[]]=j;
}
ret+=(__builtin_popcount(i)&?-:)*count();
}
return ret;
}
inline void init() {
for(register int i=;i<M;i++) {
for(register int j=C[i][]=;j<=i;j++) {
C[i][j]=C[i-][j-]+C[i-][j];
}
}
for(register int i=;i<=B;i++) {
for(register int j=pow[i][]=;j<M;j++) {
pow[i][j]=pow[i][j-]*i;
}
}
}
int main() {
init();
for(register int T=getint();T;T--) {
const int64 l=getint(),r=getint();
for(register int i=;i<B;i++) t[i]=getint();
printf("%lld\n",solve(r)-solve(l-));
}
return ;
}

[CodeChef-DGTCNT]Chef and Digits的更多相关文章

  1. [Codechef CHSTR] Chef and String - 后缀数组

    [Codechef CHSTR] Chef and String Description 每次询问 \(S\) 的子串中,选出 \(k\) 个相同子串的方案有多少种. Solution 本题要求不是很 ...

  2. 【Codechef】Chef and Bike(二维多项式插值)

    something wrong with my new blog! I can't type matrixs so I come back. qwq 题目:https://www.codechef.c ...

  3. 【CodeChef】Chef and Graph Queries

    Portal --> CC Chef and Graph Queries Solution 快乐数据结构题(然而好像有十分优秀的莫队+可撤销并查集搞法qwq) 首先考虑一种方式来方便一点地..计 ...

  4. [CodeChef - GERALD07 ] Chef and Graph Queries

    Read problems statements in Mandarin Chineseand Russian. Problem Statement Chef has a undirected gra ...

  5. CodeChef CHEFSOC2 Chef and Big Soccer 水dp

    Chef and Big Soccer   Problem code: CHEFSOC2 Tweet     ALL SUBMISSIONS All submissions for this prob ...

  6. Codechef FNCS Chef and Churu

    Disciption Chef has recently learnt Function and Addition. He is too exited to teach this to his fri ...

  7. CodeChef - FNCS Chef and Churu(分块)

    https://vjudge.net/problem/CodeChef-FNCS 题意: 思路: 用分块的方法,对每个函数进行分块,计算出该分块里每个数的个数,这样的话也就能很方便的计算出这个分块里所 ...

  8. 【xsy2111】 【CODECHEF】Chef and Churus 分块+树状数组

    题目大意:给你一个长度为$n$的数列$a_i$,定义$f_i=\sum_{j=l_i}^{r_i} num_j$. 有$m$个操作: 操作1:询问一个区间$l,r$请你求出$\sum_{i=l}^{r ...

  9. codechef T2 Chef and Sign Sequences

    CHEFSIGN: 大厨与符号序列题目描述 大厨昨天捡到了一个奇怪的字符串 s,这是一个仅包含‘<’.‘=’和‘>’三种比较符号的字符串. 记字符串长度为 N,大厨想要在字符串的开头.结尾 ...

  10. CodeChef - UASEQ Chef and sequence

    Read problems statements in Mandarin Chinese and Russian. You are given an array that consists of n ...

随机推荐

  1. Educational Codeforces Round 59 (Rated for Div. 2) DE题解

    Educational Codeforces Round 59 (Rated for Div. 2) D. Compression 题目链接:https://codeforces.com/contes ...

  2. HDU 多校对抗赛 C Triangle Partition

    Triangle Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Oth ...

  3. C++构造函数重载以及默认参数引起的二义性

    大家都知道当我们声明一个类时,系统会提供一个默认构造函数.当我们需要提供参数进行对类数据成员进行初始化时,就需要对类的带参构造函数进行重载.同时,如果我们需要调用默认构造函数进行类数据成员的初始化时, ...

  4. MySQL远程访问权限 允许远程连接

    1 首先cd / 到根目录,打开mysql控制台 登录数据库  mysql -u root -p 2.授权远程连接 mysql> use mysql; Database changed mysq ...

  5. Android4.4中WebView无法显示图片解决方案

    在Android4.4之前我们在使用WebView时为了提高加载速度我设置了(myWebView.getSettings().setBlockNetworkImage(true);//图片加载放在最后 ...

  6. tomcat编码配置

    <Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" ...

  7. centos7.6升级ssh7.9、安装PHP7.2、Nginx1.15.9、PHP加密扩展php_screw1.5

    1.centos7 安装PHP7.2版本 #查询是否安装过php yum list installed | grep php yum provides php #移除php yum remove ph ...

  8. 「6月雅礼集训 2017 Day1」看无可看

    [题目大意] 给出n个数,a[1]...a[n],称作集合S,求

  9. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  10. cube中的判断类型

    import { createAddAPI } from '../util' const DATE_RE = /^(1|2)\d{3}[.\-/]\d{1,2}[.\-/]\d{1,2}$/ cons ...