题目链接

Problem Description

Eddy begins to like painting pictures recently ,he is sure of himself to become a painter.Every day Eddy draws pictures in his small room, and he usually puts out his newest pictures to let his friends appreciate. but the result it can be imagined, the friends are not interested in his picture.Eddy feels very puzzled,in order to change all friends 's view to his technical of painting pictures ,so Eddy creates a problem for the his friends of you.

Problem descriptions as follows: Given you some coordinates pionts on a drawing paper, every point links with the ink with the straight line, causes all points finally to link in the same place. How many distants does your duty discover the shortest length which the ink draws?

Input

The first line contains 0 < n <= 100, the number of point. For each point, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the point.

Input contains multiple test cases. Process to the end of file.

Output

Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the points.

Sample Input

3
1.0 1.0
2.0 2.0
2.0 4.0

Sample Output

3.41

分析:

题上要求的是用最短的线将坐标系上的n个点链接起来,这就是简单的最小生成树的问题,将任意两个点之间的距离计算出来,看作他们之间的路径长度,这样的话就能很好的理解为什么是最小生成树的问题了。

代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
#define INF 1 << 30
double a[101] , b[101] , map[101][101] ;
double dis[101] ;
int used[101] ;
void prim(int n)
{
int c = 0 ;
int i = 0 , j = 0 ;
double sum = 0 ;
dis[1] = 0 ;
for(i = 1 ; i <= n ; i++)
{
double min = INF ;
c = 0 ;
for(j = 1 ; j <= n ; j++)
{
if(!used[j] && dis[j] < min)
{
min = dis[j] ;
c =j ;
}
}
used[c] = 1 ;
for(j = 1 ; j <= n ; j++ )
{
if(!used[j] && dis[j] > map[c][j])
dis[j] = map[c][j] ;
}
} for(i = 1 ; i <= n ; i++)
sum += dis[i] ;
printf("%.2lf\n",sum);
}
int main()
{
int n = 0 ;
while(~scanf("%d",&n))
{
memset(a , 0 , sizeof( a ) ) ;
memset(b , 0 , sizeof( b ) ) ;
int i = 0 , j = 0 ;
for(i = 1 ; i <= n ; i++)
{
for(j = 1 ; j <= n ; j++)
map[i][j] = INF ;
dis[i] = INF ;
used[i] = 0 ;
}
for(i = 1 ; i <= n ; i++)
{
scanf("%lf%lf" , &a[i] , &b[i] );///切记不能向一般的图论的问题,在输入的同时保存路径
}
double m = 0 , x = 0;
for(i = 1 ; i <= n ; i++ )///应该在输入结束之后,将任意两点之间的路径计算出来
{
for(j = 1 ; j <= n ; j++)
{
x = (a[j]-a[i])*(a[j]-a[i])+(b[j]-b[i])*(b[j]-b[i]) ;
m = sqrt( x ) ;
map[i][j] = map[j][i] = m ;
}
}
prim( n );
}
return 0 ;
}

HDU 1162 Eddy's picture (最小生成树 普里姆 )的更多相关文章

  1. hdu 1162 Eddy's picture(最小生成树算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 Eddy's picture Time Limit: 2000/1000 MS (Java/Ot ...

  2. HDU 1162 Eddy's picture (最小生成树)(java版)

    Eddy's picture 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 ——每天在线,欢迎留言谈论. 题目大意: 给你N个点,求把这N个点 ...

  3. hdu 1162 Eddy's picture (最小生成树)

    Eddy's picture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. 图->连通性->最小生成树(普里姆算法)

    文字描述 用连通网来表示n个城市及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价.对于n个定点的连通网可以建立许多不同的生成树,每一棵生成树都可 ...

  5. hdu 1162 Eddy's picture (Kruskal 算法)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 Eddy's picture Time Limit: 2000/1000 MS (Java/Ot ...

  6. 图解最小生成树 - 普里姆(Prim)算法

    我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...

  7. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  8. HDU 1162 Eddy's picture

    坐标之间的距离的方法,prim算法模板. Eddy's picture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32 ...

  9. hdu 1162 Eddy's picture (prim)

    Eddy's pictureTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

随机推荐

  1. MySQL☞create语句

    几种常用的建表语句: 1.最简单的建表语句: create table 表名( 列名1 数据类型(长度), 列名2 数据类型(长度), ... ) 2.带主键的建表语句: CREATE TABLE 表 ...

  2. NMON记录服务器各项性能数据

    1.将下载下来的nmon文件通过ftp传入服务器下,将nmon权限全开chmod +x nmon 2.查看nmon可以看到如下内容 查看各项指标 输入C,CPU数据 M,内存 N,网络 D,磁盘 T, ...

  3. 异常处理中try,else,finally含有return的情况解析

    直接看代码,拿到你的py下运行测试一下就 明白了. 例一: def f(): try: print() finally: print() print(f()) # 若注释掉finally内的retur ...

  4. 2.爬虫 urlib库讲解 异常处理、URL解析、分析Robots协议

    1.异常处理 URLError类来自urllib库的error模块,它继承自OSError类,是error异常模块的基类,由request模块产生的异常都可以通过这个类来处理. from urllib ...

  5. 九度OJ--Q1167

    import java.util.Scanner;import java.util.TreeSet; /* * 题目描述: * 输入一个数组的值,求出各个值从小到大排序后的次序. * 输入: * 输入 ...

  6. Jenkins的pipeline脚本中获取git代码变更用户名和email

    // Get checkout output valuedef changeLogSets = checkout([$class: 'GitSCM', branches: [[name: '*/mas ...

  7. 简单的java采集程序二

    继[简单的java采集程序],这里将完成对整个网站的号码段的采集任务. [使用预编译+批处理采集网页内容至数据库表中]          在之前我们用statement类来创建sql语句的执行对象,以 ...

  8. 【转】 cocos2dx 3.x C++搭建protobuf环境

    http://blog.csdn.net/ganpengjin1/article/details/50964961 Cocos2dx 里面在网络游戏通信这一块一般我们都会采用protobuf来进行通信 ...

  9. systemPath

    <dependency>   <groupId>com.aliyun.mns</groupId>   <artifactId>aliyun-sdk-mn ...

  10. SVN分支/主干Merge操作小记

    一.前言 说来惭愧,鄙人从事开发多年,使用svn已经好几个年头了,但是却仅限于update.commit.compare之类的操作,最近想到github上学习别人写的NIO源码,顺便去熟悉git的使用 ...