引语:在数论中,对于素数的研究一直就很多,素数测试的方法也是非常多,如埃式筛法,6N±1法,或者直接暴力判(试除法)。但是如果要判断比较大的数是否为素数,那么传统的试除法和筛法都不再适用。所以我们需要学习Miller_Rabin算法。

知识准备 + 算法推导:

1.威尔逊定理:若p是素数,则 (p-1) !≡ -1(mod p).

2.有趣的是,威尔逊定理的逆命题也是正确的:设n是正整数且 n ≥ 2 ,若 (n-1) !≡ -1(mod n),则是素数.

很多朋友可能在学习的时候会碰到威尔逊定理,它主要是告诉我们,它的逆定理给出了一种素性检验的方法(其实用的少,原因在后),遗憾的是,这不是一个实用的检验法,因为这需要进行(n-2)次模n的乘法运算才能得到 (n-1)! 模n的值,运算量达到了O( n(log2n)2 ) 次位运算。

行吧,那我们只能另谋出路了。

3.费马小定理:设是一个素数,a是一个正整数且p不整除a ,则 ap-≡ 1(mod p).

4.伪素数:令b是一个正整数. 若n是一个正合数且 bn ≡ b(mod n),则称n为以b为基的伪素数(有时也称费马伪素数)。(唉~,这是虚伪的素数,它爱着费马测试,却是合数)。

辣个男人,它来了!

那么基于费马小定理,Miller检验:假如n是素数,且gcd(a,n) = 1,那么 an-1 ≡ 1(mod n).如果 an-1 ≡ 1(mod n)(a为任意小于n的正整数),则可近似认为n是素数。取多个底进行试验,次数越多,n为素数的概率越大。

5.【重头戏】卡迈尔数:一个合数 n 若对所有满足 gcd(b, n) = 1 的正整数b都有 bn-1 ≡ 1(mod n)成立,则称为卡迈尔(Carmichael)数或者称为绝对伪素数(不得不服,6601)。

6.二次探测定理:如果p是一个素数,且 0 < x < p,则方程 x2%p = 1的解为 x = 1 或 x = p - 1.

辣个男人,它又来了!

既然有卡迈尔数的存在,那么需要排除卡迈尔数,可以根据二次定理,在利用费马小定理计算 bn-1%的过程中增加对整数n的二次探测,一旦发现违背二次探测条件,即得出n不是素数的结论。

这里,令 n - 1 = 2rs,其中s是一个奇数,随机选择一个a, 1 ≤ a ≤ n-1 ,如果  a2s ≡ 1(mod n) 并且 a≡ 1 (mod n) 或 a≡ (n-1) (mod n),则通过了测试,但如果后面的测试,在a的指数不断乘2的过程中,如果出现没有通过测试,则不是素数。如果取了几次底a,都通过了测试,那么我们就可以接近100%的认为n是素数。

代码:

#define LL long long
//这里可以采用随机数,我用的是准备好的基数
const int Test[] = {2, 3, 5, 7, 11, 13, 17, 19};
const int Times = 8;  //可以调整 LL Multi(LL a, LL b, LL mod)
{
LL ans = 0;
while(b)
{
if(b&1)
{
ans = (ans + a)%mod;
}
a = (a+a)%mod; //要这么写
b>>=1;
}
return ans;
} LL Pow(LL a, LL b, LL mod)
{
LL ans = 1;
while(b)
{
if(b&1)
{
ans = Multi(ans, a, mod);
}
b>>=1;
a = Multi(a, a, mod);
}
return ans;
} bool Miller_Rabin(LL n)
{
if(n < 2) return false;
LL s = n-1, t = 0;
while( !(s&1) )
{
t++;
s>>=1;
}
for(int i = 0; i < Times; i++)
{
if(n == Test[i])
return true;
LL x = Pow(Test[i], s, n);
LL next = x;
for(int j = 0; j < t; j++)
{
next = Multi(x, x, n);
if(next == 1 && x != 1 && x != n-1)
return false;
x = next;
}
if(x != 1)
return false;
}
return true;
}

  

Miller_Rabin素数测试【学习笔记】的更多相关文章

  1. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  2. hdu 6169 Senior PanⅡ Miller_Rabin素数测试+容斥

    Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Pr ...

  3. Miller_Rabin 素数测试

    费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题. 推理过程如下(摘自维基百科): 摘自另 ...

  4. Web安全测试学习笔记-DVWA-SQL注入-2

    接上一篇SQL注入的学习笔记,上一篇我通过报错信息得知后台数据库是MySQL(这个信息非常重要~),然后通过SQL注入拿到了用户表的所有行,其实我们还可以通过MySQL的特性来拿更多的信息. 1. 获 ...

  5. 【数学】【筛素数】Miller-Rabin素性测试 学习笔记

        Miller-Rabin是一种高效的随机算法,用来检测一个数$p$是否是素数,最坏时间复杂度为$\log^3 p$,正确率约为$1-4^{-k}$,$k$是检验次数. 一.来源     Mil ...

  6. Miller_Rabin素数测试

    #include<iostream> #include<cmath> #include<cstdio> #include<cstring> #inclu ...

  7. Miller-Rabin素数测试学习小计

    1.Miller-Rabin是干啥的?它是用来检测一个数字(一般是很大的数字)是不是素数: 2.Miller-Rabin算法基于的两个定理: (1)费尔马小定理:如果p是一个素数,且0<a< ...

  8. Web安全测试学习笔记 - DVWA+PHP环境搭建

    DVWA(Damn Vulnerable Web Application),是一个用PHP编写的,作为Web安全测试练习平台的合法环境(毕竟咱不能为了练习就随便找个网站去攻击...),也就是俗称的靶场 ...

  9. QTP测试学习笔记

    QuickTest Professional(简称QTP)功能自动化测试,原属于Mercury Interactive公司产品,2006年7月被惠普公司收购了,通过安装文件目录可以看到,都是默认放在C ...

随机推荐

  1. mysql 纸 mysql_fetch_array OR mysql_fetch_assoc OR mysql_fetch_row

    <?php $con = mysql_connect("localhost", "root", "123456");if (!$con ...

  2. Centos里没有lsb_release

    查看Centos操作系统版本,输入指令 lsb_release -a 报无此命令 解决办法,安装lsb_release 1.执行指令:yum install -y redhat-lsb 2.安装完毕后 ...

  3. Hyperledger Fabric源码解析

    Hyperledger Fabric开源于2015年12月,截至2018年2月初有185个公司/组织成员加入.最初由IBM和DAH的工程师贡献,现在约有70名的代码贡献者,4000+代码提交,代码行数 ...

  4. PC建立WIFI热点

    netsh wlan set hostednetwork ssid=test key =12345678netsh wlan start hostednetwork

  5. 8.INSERT INTO 语句 UPDATE 语句

    1. INSERT INTO 语句 INSERT INTO 语句用于向表格中插入新的行. 语法 INSERT INTO 表名称 VALUES (值1, 值2,....) INSERT INTO Per ...

  6. ssh试卷

    2.简述Hibernate的工作原理. 答:首先,Configuration读取Hibernate的配置文件及映射文件中的信息,即加载配置文件和映射文件,并通过Hibernate配置文件生成一个多线程 ...

  7. 黑盒测试实践-任务进度-Day03

    任务进度11-28 使用工具 selenium 小组成员 华同学.郭同学.穆同学.沈同学.覃同学.刘同学 任务进度 经过了前两天的学习任务的安排,以下是大家的任务进度: 华同学(任务1) 1.今天就接 ...

  8. PC/APP/H5三端测试的相同与不同

    随着手机应用的不断状态,同一款产品的移动端应用市场占相较PC端也越来越大,那么app与PC端针对这些产品的测试有什么相同与不同之处呢?总结如下: 首先谈一谈相同之处: 一,针对同一个系统功能的测试,三 ...

  9. Diameter协议摘要

    ---------选择同学整理文档 1.   协议概述 Diameter协议主要为应用程序提供认证.鉴权.计费框架,即AAA,并支持本地AAA和漫游场景下的AAA. 1.1.  特点介绍 以前的AAA ...

  10. 【SQL】- 基础知识梳理(七) - 索引

    索引的概念 在关系型数据库中,索引是对数据库表中一列或多列的值进行排序的一种结构. SQL SERVER中有索引的类型:按存储结构区分:“聚集索引(又称聚类索引,簇集索引)”,“分聚集索引(非聚类索引 ...