Description

刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.

刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案.

好了, 这就是困扰阿狸的问题. 换句话说, 你需要求出n个点的简单(无重边无自环)无向连通图数目.

由于这个数字可能非常大, 你只需要输出方案数mod 1004535809(479 * 2 ^ 21 + 1)即可.

Input

仅一行一个整数n(<=130000)

Output

仅一行一个整数, 为方案数 mod 1004535809.

Sample Input

4

Sample Output

38

HINT

对于 100%的数据, n <= 130000

Sol

设i个顶点的简单连通图的个数为\(f[i]\),则我们容斥一下,得到:

\(f[n]=2^{\frac{n(n-1)}{2}}-\sum_{i=1}^{n-1}f[i]*C_{n-1}^{i-1}*2^{\frac{(n-i)(n-i-1)}{2}}\)

意义其实就是所有情况减去联通个数不足n的情况,注意后面要枚举哪些点和1号节点连通,所以要乘个组合数。

我们把组合数拆开,然后两边同除以\((n-1)!\)得到:

\(\sum_{i=1}^{n}\frac{f[i]*2^{\frac{(n-i)(n-i-1)}{2}}}{(i-1)!*(n-i)!}=\frac{2^{\frac{n(n-1)}{2}}}{(i-1)!}\)

如果我们把式子左边拆成两半,会发现这是一个卷积的形式,所以设这些多项式分别为\(A,B,C\),则有\(A*B=C\),所以我们通过\(C\)和\(B^{-1}\)相乘,就得到了\(A\),之后取\(A\)的第n项然后乘个阶乘就是答案。

其实如果\(f[i]\)表示i+1个点的答案的话,好像会简洁很多,实质没有变化(我就是这么写的)。

Code

#include <bits/stdc++.h>
using namespace std;
int n,a[262145],b[262145],c[262145],d[262145],P=1004535809,i,j,k,fac[262145],ifa[262145],inv[262145],wn,w,t,len;
int ksm(int a,long long b){int res=1;for(;b;b>>=1,a=1ll*a*a%P) if(b&1) res=1ll*res*a%P;return res;}
void ntt(int *a,int n,int op)
{
for(i=k=0;i<n;i++){if(i>k) swap(a[i],a[k]);for(j=(n>>1);(k^=j)<j;j>>=1);}
for(k=2,wn=ksm(3,op==1?(P-1)/k:P-1-(P-1)/k);k<=n;k<<=1,wn=ksm(3,op==1?(P-1)/k:P-1-(P-1)/k))
for(i=0,w=1;i<n;i+=k,w=1) for(j=0;j<(k>>1);j++,w=1ll*w*wn%P)
t=1ll*a[i+j+(k>>1)]*w%P,a[i+j+(k>>1)]=(a[i+j]-t+P)%P,a[i+j]=(a[i+j]+t)%P;
if(op==-1) for(t=ksm(n,P-2),i=0;i<n;i++) a[i]=1ll*a[i]*t%P;
}
void getinv(int *a,int *b,int *c,int n)
{
if(n==1){b[0]=ksm(a[0],P-2);return;}
getinv(a,b,c,n>>1);
memcpy(c,a,sizeof(int)*n);memset(c+n,0,sizeof(int)*n);
ntt(c,n<<1,1);ntt(b,n<<1,1);
for(int i=0;i<(n<<1);i++) b[i]=(b[i]*2ll%P-1ll*b[i]*b[i]%P*c[i]%P+P)%P;
ntt(b,n<<1,-1);memset(b+n,0,sizeof(int)*n);
}
int main()
{
scanf("%d",&n);for(len=1;len<=n;len<<=1);
inv[0]=inv[1]=fac[0]=fac[1]=ifa[0]=ifa[1]=1;
for(int i=2;i<=len;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P,fac[i]=1ll*fac[i-1]*i%P,ifa[i]=1ll*ifa[i-1]*inv[i]%P;
for(int i=0;i<len;i++) d[i]=1ll*ksm(2,1ll*i*(i+1)/2)*ifa[i]%P;
for(int i=1;i<len;i++) a[i]=1ll*ksm(2,1ll*i*(i-1)/2)*ifa[i]%P;
a[0]=1;getinv(a,b,c,len);ntt(d,len<<1,1);ntt(b,len<<1,1);
for(int i=0;i<(len<<1);i++) b[i]=1ll*b[i]*d[i]%P;
ntt(b,len<<1,-1);printf("%d\n",1ll*b[n-1]*fac[n-1]%P);
}

【bzoj3456】城市规划 dp+多项式求逆的更多相关文章

  1. BZOJ3456 城市规划 【多项式求逆】

    题目链接 BZOJ3456 题解 之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆 设\(f_n\)表示\(n\)个点带标号无向连通图数 设\(g_ ...

  2. BZOJ 3456: 城市规划(dp+多项式求逆)

    传送门 解题思路 这道题就是求带标号的无向连通图个数,首先考虑\(O(n^2)\)的做法,设\(f_i\)表示有\(i\)个节点的无向连通图个数,那么考虑容斥,先把所有的无向图求出,即为\(2^{C( ...

  3. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

  4. BZOJ3456 城市规划(多项式求逆)

    设f[i]为连通图的数量,g[i]为不连通图的数量,显然有f[i]=2i*(i-1)/2-g[i],g[i]通过枚举1所在连通块大小转移,有g[i]=Σf[j]*C(i-1,j-1)·2(i-j)*( ...

  5. 【bzoj3456】城市规划(多项式求逆+dp)

    Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, ...

  6. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  7. BZOJ3456 城市规划 【多项式求ln】

    题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...

  8. CF848E Days of Floral Colours——DP+多项式求逆/分治NTT

    官方题解:http://codeforces.com/blog/entry/54233 就是由简入繁 1.序列处理,只考虑一个半圆 2.环形处理(其实这个就是多了旋转同构) 然后基于分割线邻居的跨越与 ...

  9. 洛谷P4841 城市规划(生成函数 多项式求逆)

    题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...

随机推荐

  1. java成神之——Fork/Join基本使用

    Fork/Join 大任务分小任务,小任务结果合并 ForkJoinPool pool = new ForkJoinPool(); RecursiveTask<Integer> task1 ...

  2. java - 读取,导出 excel文件数据

    首先需下载poi java包,添加至构建路径, 写处理方法: import java.io.FileInputStream;import java.io.FileOutputStream;import ...

  3. JAVA中跨平台分隔符

    在Windows下的路径分隔符和Linux下的路径分隔符是不一样的,当直接使用绝对路径时,跨平台会暴出“No such file or diretory”的异常. 比如说要在temp目录下建立一个te ...

  4. Android开发笔记 TableLayout常用的属性介绍

    今天看了安卓简单控件的布局方式,大概有绝对.相对.表格.线性.帧式布局五种方式,表格布局里面的一些属性相对来说比较复杂,下面主要谈谈表格方式布局的一些属性   TableLayout经常用到的属性有: ...

  5. EOFException异常的处理

    TOmcat启动后报:IOException while loading persisted sessions: Java.io.EOFException错误 - IOException while ...

  6. 字节流之文件输出流FileOutputStream

    文件拷贝:

  7. JS中使用正则表达式

  8. 刷题向》图论》BZOJ1179 关于tarjan和SPFA的15秒(normal)

    这道题可以考察图论的掌握程度(算半道水题) 题目如下 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i ...

  9. IDEA maven打包时跳过测试

    配置这个install -Dmaven.test.skip=true, 可以跳过business项目本地启动自动跑测试用例

  10. CompositePattern(23种设计模式之一)

    设计模式六大原则(1):单一职责原则 设计模式六大原则(2):里氏替换原则 设计模式六大原则(3):依赖倒置原则 设计模式六大原则(4):接口隔离原则 设计模式六大原则(5):迪米特法则 设计模式六大 ...