Chapter 1 Vector Algebra


♦ Vector Space

Vector and vector space

A vector is described as a quantity that has both direction and length.  A vector space is a collection of these geometic objects that can be added together and multiplied by numbers.

What we mainly focus on is the vector space over the real number field,which is a nonempty set V together with two operations called addition and scalar multiplication.The sum u+v of two elements u,v∈V is also an element of V,and the scalar multiple cu of u∈V by the real number c is an element of V. These operations are required to satisfy the axioms followed.

Axiom

Let V be a vector space over the real number field:

(a)Addition is associative and commutative.

(b)There is a zero element θ such that u+θ=u for every u∈V.

(c)The distribution laws hold:

(c+d)u=cu+du,c(u+v)=cu+cv;

for every real numbers c,d and u,v∈V.

(d)(cd)u=c(du) for every real c,d,and u∈V.

(e)0u=θ,1u=u,for every u∈V.

Example

(a) In a vector space the additive inverse −u is often called the opposite vector of u; it has the same magnitude as the original and opposite direction and we have u+(-u)=θ and -(-u)=u.A unit vector in a normed vector space is a vector of length 1.The normalized vector û of a non-zero vector u is the unit vector in the direction of u.

(b) In Euclidean space, two vectors are orthogonal if and only if their scalar product is zero, or one of the vectors is zero. It is an extension of the concept of perpendicular vectors to spaces of any dimension.

Definition

A subset B of a vector space V is called a linearly dependent set if there exist distinct elements u1,u2...,um∈B And real numbers c1,c2...cm not all 0,such that c1u1 +c2u2 +...+cmum=θ.If B is not linearly dependent,then it is an linearly independent set.V is a finite dimensional vector space if some finite subset B of V spans V,namely every element u∈V is a linear combination u=c1u1+c2u2+...+cmum where u1,u2...,um∈B. If u1,u2...,um are linearly independent,then the combination is unique ,and we call the linearly independent set {u1,u2...,um} that spans V a basis for V.

Proposition

Vectors α,β,γ are coplanar if and only if there exist three real numbers λ,μ,ν such that λα+μβ+νγ=θ.


Reviewing notes 1.1 of Analytic geometry的更多相关文章

  1. 【Math for ML】解析几何(Analytic Geometry)

    I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{ ...

  2. Reviewing notes 1.1 of Advanced algebra

    ♦Linear map Definition Linear map A linear map from vector space V to W over a field F is a function ...

  3. Reviewing notes 2.1 of Mathematical analysis

    Chapter2 Numerical sequence and function Cartesian product set If S and T are sets,then the cartesia ...

  4. PDF分享:国外优秀数学教材选评

    <国外优秀数学教材选评>推荐书目下载 具体内容请查看原内容: http://www.library.fudan.edu.cn/wjzx/list/373-1-20.htm 或者http:/ ...

  5. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

  6. NI Vision for LabVIEW 基础(一):NI Vision 简介

    NI Vision 控件模板 Vision控件模板位于LabVIEW控件模板的最顶层,由一下元素组成: IMAQ Image.ctl—该控件是一个类型定义,用于声明图象类型的数据.在VI的前面板中使用 ...

  7. 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换

    总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...

  8. MIT课程

    8.02  Physics II (电磁学基础) Introduction to electromagnetism and electrostatics: electric charge, Coulo ...

  9. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

随机推荐

  1. Android 4.4 外置卡

    虾米.酷狗.百度地图.UC浏览器 下载 可以设置下载路径保存到外置SD卡上. 其他的软件目前还不支持. 最终Android 4.2是可以选择的,后来Android禁用了外置卡,以上软件是如何实现的?

  2. 【转】OpenGL随笔(1)—— mipmap 详解

    注:本文使用的所有 OpenGL 函数来自 OpenGL 4.5,优先使用 DSA. 使用 mipmap 时,OpenGL 根据被映射对象的大小(单位是像素),自动决定使用纹理图的哪个分辨率级别.mi ...

  3. mahout in Action2.2-给用户推荐图书(2)-分析对用户推荐书目的结果

    2.2.3 Analyzing the output 在之前的程序运行结果中我们得到的结果输出是: RecommendedItem [item:104, value:4.257081] 程序要求选择一 ...

  4. Python嵌套、递归、高阶函数

    一.嵌套函数 1.嵌套函数简单的理解可以看作是在函数的内部再定义函数,实现函数的“私有”. 2.特点: <1> 函数内部可以再次定义函数. <2> 只有被调用时才会执行(外部函 ...

  5. 1-5 构建官方example-Windows平台

    https://github.com/facebook/react-native https://github.com/facebook/react-native.git  https://githu ...

  6. FZU2282 Wand

    题意 n个数字,要求至少k个数字位置不变,其余进行错排的方案数 分析 错排公式: D(n)=(n-1)[D(n-2)+D(n-1)]  如果n个数字,i个数字位置不变,其余进行错排的的方案数是C(n, ...

  7. jmap, jhat命令

    jmap命令有下面几种常用的用法 jmap [pid] jmap -histo:live [pid] >a.log jmap -dump:live,format=b,file=xxx.xxx [ ...

  8. Mac notes

    1. Mac应用数据存放位置 ~/Library/Application Support/ 比如sublime text的应用数据~/Library/Application Support/Subli ...

  9. c语言学习笔记 switch case语句为什么要加break

    先来看一个没有break的例子: int main() { int a = 1; switch (a) { case 1: printf("1"); case 2: printf( ...

  10. Luogu 4784 [BalticOI 2016 Day2]城市

    斯坦纳树复习,我暑假的时候好像写过[JLOI2015]管道连接来着. 设$f_{i, s}$表示以$i$为根,$k$个重要点的连通状态为$s$,($0$代表没有连进最小生成树里面去,$1$代表连进了最 ...