本文为《Flink大数据项目实战》学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程:

Flink大数据项目实战:http://t.cn/EJtKhaz

1. Kafka-connector概述及FlinkKafkaConsumer(kafka source)

1.1回顾kafka

1.最初由Linkedin 开发的分布式消息中间件现已成为Apache顶级项目

2.面向大数据

3.基本概念:

1.Broker

2.Topic

3.Partition

4.Producer

5.Consumer

6.Consumer Group

7.Offset( 生产offset , 消费offset , offset lag)

1.2引入依赖

Flink读取kafka数据需要通过maven引入依赖:

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-connector-kafka-0.8_2.11</artifactId>

<version>1.6.2</version>

</dependency>

1.3Flink KafkaConsumer

Flink KafkaConsumer目前已经出现了4个大的版本:FlinkKafkaConsumer08、FlinkKafkaConsumer09、FlinkKafkaConsumer10和FlinkKafkaConsumer11.

FlinkKafkaConsumer08和FlinkKafkaConsumer09都继承FlinkKafkaConsumerBase,FlinkKafkaConsumerBase内部实现了CheckpointFunction接口和继承RichParallelSourceFunction类。

FlinkKafkaConsumer11继承FlinkKafkaConsumer10,FlinkKafkaConsumer10继承FlinkKafkaConsumer09。FlinkKafkaConsumer081和FlinkKafkaConsumer082继承FlinkKafkaConsumer08。

1.4 FlinkKafkaConsumer010

FlinkKafkaConsumer010(String topic, DeserializationSchema<T> valueDeserializer, Properties props)

FlinkKafkaConsumer010(String topic, KeyedDeserializationSchema<T> deserializer, Properties props)

FlinkKafkaConsumer010(List<String> topics, DeserializationSchema<T> deserializer, Properties props)

FlinkKafkaConsumer010(List<String> topics, KeyedDeserializationSchema<T> deserializer, Properties props)

FlinkKafkaConsumer010(Pattern subscriptionPattern, KeyedDeserializationSchema<T> deserializer, Properties props)

三个构造参数:

1.要消费的topic(topic name / topic names/正表达式)

2.DeserializationSchema / KeyedDeserializationSchema(反序列化Kafka中的数据)

3.Kafka consumer的属性,其中三个属性必须提供:

a)bootstrap.servers (逗号分隔的Kafka broker列表)

b)zookeeper.connect (逗号分隔的Zookeeper server列表) (仅Kafka 0.8需要)

c)group.id(consumer group id)

1.5反序列化Schema类型

作用:对kafka里获取的二进制数据进行反序列化

FlinkKafkaConsumer需要知道如何将Kafka中的二进制数据转换成Java/Scala对象,DeserializationSchema定义了该转换模式,通过T deserialize(byte[] message)

FlinkKafkaConsumer从kafka获取的每条消息都会通过DeserializationSchema的T deserialize(byte[] message)反序列化处理

反序列化Schema类型(接口):

1.DeserializationSchema(只反序列化value)

2.KeyedDeserializationSchema

1.6 DeserializationSchema接口

1.7 KeyedDeserializationSchema接口

1.8常见反序列化Schema

SimpleStringSchema

JSONDeserializationSchema / JSONKeyValueDeserializationSchema

TypeInformationSerializationSchema/ TypeInformationKeyValueSerializationSchema(适合读写均是flink的场景)

AvroDeserializationSchema

1.9 FlinkKafkaConsumer010最简样版代码

1.10 FlinkKafkaConsumer消费模式设置(影响从哪里开始消费)

设置FlinkKafkaConsumer消费模式示例代码如下所示:

不同消费模式的解释如下所示:

注意1:kafka 0.8版本, consumer提交偏移量到zookeeper,后续版本提交到kafka(一个特殊的topic: __consumer_offsets)

注意2:当作业从故障中恢复或者从savepoint还原时,上述设置的消费策略将不能决定开始消费的位置,真正的起始位置由保存点或检查点中存储的偏移量。

1.11理解FlinkKafkaSource的容错性(影响消费起始位置)

如果Flink启用了检查点,Flink Kafka Consumer将会周期性的checkpoint其Kafka偏移量到快照。

通过实现CheckpointedFunction。

ListState<Tuple2<KafkaTopicPartition, Long>> 。

保证仅一次消费。

如果作业失败,Flink将流程序恢复到最新检查点的状态,并从检查点中存储的偏移量开始重新消费Kafka中的记录。(此时前面所讲的消费策略就不能决定消费起始位置了,因为出故障了)。

1.12 Flink Kafka Consumer Offset提交行为

Flink Kafka Consumer Offset提交行为分为以下两种:

1.13不同情况下消费起始位置的分析

1.14动态Partition discovery

Flink Kafka Consumer支持动态发现Kafka分区,且能保证exactly-once。

默认禁止动态发现分区,把flink.partition-discovery.interval-millis设置大于0即可启用:

properties.setProperty(“flink.partition-discovery.interval-millis”, “30000”)

1.15动态Topic discovery

Flink Kafka Consumer支持动态发现Kafka Topic,仅限通过正则表达式指定topic的方式。

默认禁止动态发现分区,把flink.partition-discovery.interval-millis设置大于0即可启用。

2. FlinkKafkaProducer(kafka sink)

2.1 Flink KafkaProducer

FlinkKafkaProducerBase实现CheckpointFunction接口实现容错,同时也继承了RichSinkFunction类。FinkKafkaProducer08继承FlinkKafkaProducerBase。FinkKafkaProducer09继承FlinkKafkaProducerBase,FinkKafkaProducer10继承FinkKafkaProducer09.

FinkKafkaProducer011已经支持事务,它继承TowPhaseCommitSinkFunction。TowPhaseCommitSinkFunction继承RichSinkFunction。

2.2FlinkKafkaProducer

FlinkKafkaProducer包含了如下不同的构造方法:

FlinkKafkaProducer010(String brokerList, String topicId, SerializationSchema<T> serializationSchema)

FlinkKafkaProducer010(String topicId, SerializationSchema<T> serializationSchema, Properties producerConfig)

FlinkKafkaProducer010(String brokerList, String topicId, KeyedSerializationSchema<T> serializationSchema)

FlinkKafkaProducer010(String topicId, KeyedSerializationSchema<T> serializationSchema, Properties producerConfig)

FlinkKafkaProducer010(String topicId,SerializationSchema<T> serializationSchema,Properties producerConfig,@Nullable FlinkKafkaPartitioner<T> customPartitioner)

FlinkKafkaProducer010(String topicId,KeyedSerializationSchema<T> serializationSchema,Properties producerConfig,@Nullable FlinkKafkaPartitioner<T> customPartitioner)

Value序列化接口SerializationSchema,如果实现这个接口就需要实现如下方法:

byte[] serialize(T element);

如果key也需要实现序列化,则需要实现序列化接口KeyedSerializationSchema,然后重新如下方法:

byte[] serializeKey(T element);

byte[] serializeValue(T element);

String getTargetTopic(T element)

2.3常见序列化Schema

常见的序列化Schema:

1.TypeInformationSerializationSchema/ TypeInformationKeyValueSerializationSchema(适合读写均是flink的场景)

2.SimpleStringSchema

2.4 producerConfig

FlinkKafkaProducer内部KafkaProducer的配置,具体配置可以参考官网地址:

https://kafka.apache.org/documentation.html

2.5 FlinkKafkaPartitioner

默认使用FlinkFixedPartitioner,即每个subtask的数据写到同一个Kafka partition中。

自定义分区器:继承FlinkKafkaPartitioner(partitioner的状态在job失败时会丢失,不会checkpoint)。

2.6 FlinkKafkaProducer容错

Flink学习笔记:Connectors之kafka的更多相关文章

  1. Apache Flink学习笔记

    Apache Flink学习笔记 简介 大数据的计算引擎分为4代 第一代:Hadoop承载的MapReduce.它将计算分为两个阶段,分别为Map和Reduce.对于上层应用来说,就要想办法去拆分算法 ...

  2. Flink学习笔记:Connectors概述

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  3. Flink学习笔记-新一代Flink计算引擎

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

  4. flink学习笔记-数据源(DataSource)

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

  5. Flink学习笔记:Flink开发环境搭建

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  6. flink学习笔记:DataSream API

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  7. Flink学习笔记:Operators串烧

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  8. Flink学习笔记:Time的故事

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  9. flink学习笔记-各种Time

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

随机推荐

  1. MySql主从复制原理和环境配置搭建

    主从复制原理 实质就是通过二进制的sql文件实现主从复制 MySQL的主从复制是MySQL本身自带的一个功能,不需要额外的第三方软件就可以实现,其复制功能并不是copy文件来实现的,而是借助binlo ...

  2. DDD学习笔录——提炼问题域之与领域专家一起获得领域见解

    业务和开发团队之间的协作是DDD必不可少的部分,并且它是处于开发阶段的产品获得成功的关键. 领域专家指的是那些从业务领域的政策和工作流程到棘手处和特性都具有深刻理解的人.能够为你的问题区域提供深刻见解 ...

  3. Mycat实战之新增基于hash分片的表

    1. 修改rule.xml hash分片规则 主要改两个地方: vi rule.xml 分片数量,这里改为3 对应 三个库 hash规则 默认是id列 这里为 PROVINCE 2. reload 加 ...

  4. webRTC peerconnection_client demo创建VS工程

    编译了webRTC Windows源码之后,想使用编译出来的库写一个demo出来,但是又不知到怎么下手.就想通过源码中带的示例peerconnection_client和peerconnection_ ...

  5. 使用jq.lazyload.js,解决设置loading图片的问题

    最近在使用lazyload的时候,遇上一个问题.当对img做宽100%时,就是placeholder的loading图片也会100%宽,这样一般来说loading图片就会变得很大.实在是不能应用到项目 ...

  6. 可变、不可变数据类型和hash

    一.可变和不可变数据类型 在python中,我们对数据类型除了分为数字类型.字符串类型.列表类型.元组类型.字典类型和集合类型外, 还有另外一种分类方式,我们给数据类型分为可变数据类型和不可变数据类型 ...

  7. 201671010140. 2016-2017-2 《Java程序设计》java学习第六章

    java学习第六章    本周对与java中的接口,lambda表达式与内部类进行了学习,以下是我在学习中的一些体会:    1.接口: <1>.接口中的所有常量必须是public sta ...

  8. ajax请求参数中含有特殊字符"#"的问题 (另附上js编码解码的几种方法)

    使用ajax向后台提交的时候 由于参数中含有#  默认会被截断 只保留#之前的字符  json格式的字符串则不会被请求到后台的action 可以使用encodeURIComponent在前台进行编码, ...

  9. C++中内存区域的划分

    栈存储区 那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区.里面的变量通常是局部变量.函数参数等. 堆存储区(自由存储区) 那些由new或者malloc分配的内存块,他们的释放编译器 ...

  10. Java多线程共享变量控制

    1. 可见性 如果一个线程对共享变量值的修改,能够及时的被其他线程看到,叫做共享变量的可见性.如果一个变量同时在多个线程的工作内存中存在副本,那么这个变量就叫共享变量 2. JMM(java内存模型) ...