原题链接在这里:https://leetcode.com/problems/predict-the-winner/description/

题目:

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

题解:

dp[i][j]是nums 从i到j这一段[i, j] 先手的player 比 后手多得到多少分.

先手 pick first. 递推时 dp[i][j] = Math.max(nums[i]-dp[i+1][j], nums[j]-dp[i][j-1]). 如果A选了index i的score, B只能选择[i+1, j]区间内的score. 如果A选了index j的score, B只能选择[i, j-1]区间内的score.

看到计算dp[i][j]时, i 需要 i+1, j 需要 j-1. 所以循环时 i从大到小, j 从小到大.

初始化区间内只有一个数字时就是能得到的最大分数.

答案看[0, nums.length-1]区间内 A得到的score是否大于等于0.

Time Complexity: O(len^2). len = nums.length.

Space: O(len^2).

AC Java:

 class Solution {
public boolean PredictTheWinner(int[] nums) {
if(nums == null || nums.length == 0){
return true;
} int len = nums.length;
int [][] dp = new int[len][len];
for(int i = len-1; i>=0; i--){
for(int j = i+1; j<len; j++){
int head = nums[i]-dp[i+1][j];
int tail = nums[j]-dp[i][j-1];
dp[i][j] = Math.max(head, tail);
}
}
return dp[0][len-1] >= 0;
}
}

空间优化.

Time Complexity: O(len^2). len = nums.length.

Space: O(len).

AC Java:

 class Solution {
public boolean PredictTheWinner(int[] nums) {
if(nums == null || nums.length == 0){
return true;
} int len = nums.length;
int [] dp = new int[len];
for(int i = len-1; i>=0; i--){
for(int j = i+1; j<len; j++){
int head = nums[i]-dp[j];
int tail = nums[j]-dp[j-1];
dp[j] = Math.max(head, tail);
}
}
return dp[len-1] >= 0;
}
}

另一种implementation.

Time Complexity: O(len^2). len = nums.length.

Space: O(len^2).

 class Solution {
public boolean PredictTheWinner(int[] nums) {
if(nums == null || nums.length == 0){
return true;
} int n = nums.length;
int [][] dp = new int[n][n];
for(int i = 0; i<n; i++){
dp[i][i] = nums[i];
} for(int size = 1; size<n; size++){
for(int i = 0; i+size<n; i++){
dp[i][i+size] = Math.max(nums[i]-dp[i+1][i+size], nums[i+size]-dp[i][i+size-1]);
}
} return dp[0][n-1] >= 0;
}
}

Exact the same as Stone Game.

Reference: https://discuss.leetcode.com/topic/76830/java-9-lines-dp-solution-easy-to-understand-with-improvement-to-o-n-space-complexity

LeetCode Predict the Winner的更多相关文章

  1. [LeetCode] Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  2. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

  3. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  4. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  5. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  6. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  7. 【leetcode】486. Predict the Winner

    题目如下: Given an array of scores that are non-negative integers. Player 1 picks one of the numbers fro ...

  8. 随手练——博弈论入门 leetcode - 486. Predict the Winner

    题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...

  9. [leetcode] 486. Predict the Winner (medium)

    原题 思路: 解法一: 转换比较拿取分数多少的思路,改为考虑 player拿的分数为正,把Player2拿的视为负,加上所有分数,如果最后结果大于0则Player1赢. 思考得出递归表达式: max( ...

随机推荐

  1. selenium模块控制浏览器

    利用selenium模块控制浏览器 导入selenium模块:from selenium import webdriver browserFirefox = webdriver.Firefox()#打 ...

  2. Xshell访问kali配置

    1.安装虚拟机VMware Workstation12 PRO 2.在虚拟机上安装kali2.0 3.查看liunx的ip地址ifconfig 4.端口 协议 (1)RDP协议(桌面协议)3389端口 ...

  3. 对称加密,API加密

    用于API加密,双方约定好signature_key对请求的参数进行处理 处理步骤如下 把请求的数据生成为key=>value的形式,然后拼接生成arg_key arg_key加上双方约定的si ...

  4. $.proxy() 的妙用

    $.proxy() 最主要就是用来修改函数执行时的上下文对象的. 先看以下情景: <div id="panel" style="display:none;" ...

  5. 内核模块编译时怎样绕过insmod时的版本检查

    1.Uboot:每个arm芯片或者海斯芯片都有各自的uboot. 2.但他们的内核版本可以是一样的,主要是跟各自内核的进行的编译选项有关, 31的内核版本里加了版本检查选项“Kernel type-& ...

  6. DNS 缓存机制原理

    DNS 缓存机制原理 简单来说,一条域名的DNS记录会在本地有两种缓存:浏览器缓存和操作系统(OS)缓存.在浏览器中访问的时候,会优先访问浏览器缓存, 如果未命中则访问OS缓存,最后再访问DNS服务器 ...

  7. PHP实现链式操作

    什么是链式操作 我们经常会在一些应用框架中看到如下代码: $db = new Database; $db->where('cid = 9')->order('aid desc')-> ...

  8. Python的装饰器实例用法小结

    这篇文章主要介绍了Python装饰器用法,结合实例形式总结分析了Python常用装饰器的概念.功能.使用方法及相关注意事项 一.装饰器是什么 python的装饰器本质上是一个Python函数,它可以让 ...

  9. CentOS 安装 Zabbix

    一.安装 centos7 网易下载 http://mirrors.163.com/centos/7.2.1511/isos/x86_64/CentOS-7-x86_64-DVD-1511.torren ...

  10. 有些 where 条件会导致索引无效

    在查询中,WHERE 条件也是一个比较重要的因素,尽量少并且是合理的 where条件是徆重要的,尽量在多个条件的时候,把会提取尽量少数据量的条件放在前面,减少后一个 where 条件的查询时间.有些 ...