洛谷P1350:https://www.luogu.org/problemnew/show/P1350

思路

把矩阵分为上下两块N与M

放在N中的有i辆车 则放在M中有k-i辆车

N的长为a   宽为b

M的长为a+c   宽为d

在每个矩阵中的放置种类公式如下:

A(长度,车辆)*C(宽度,车辆)

给出证明:

比如对于N来说

可以在a列中找出i列放入车 所以是A(a,i)

而且有C(b,i)种选择列的方式

由此可得 枚举放在N和M的车有几辆 并计算两个矩阵种类之积即可

PS:对于矩阵M来说A为A(a+c-i,k-i) 而不是A(a+c,k-i)    因为每排只能放1辆而且有i辆已经放在N中了

代码

#include<iostream>
using namespace std;
#define mod 100003
#define ll long long
#define maxn 2005
ll a,b,c,d,k,ans;
ll fc[maxn][maxn];
ll A(ll n,ll m)
{
ll sum=;
for(ll i=;i<=m;i++)
sum=sum%mod*(n-m+i)%mod;//排列递推
return sum;
}
ll C(int n,int m)
{
if(fc[n][m]) return fc[n][m];//记忆化
if(m>n) return ;//如果放不下了
if(n==m||m==) return fc[n][m]=;
fc[n][m]=(C(n-,m-)%mod+C(n-,m)%mod)%mod;//组合递推
return fc[n][m];
}
int main()
{
cin>>a>>b>>c>>d>>k;
for(ll i=;i<=k;i++)//枚举i辆车放在N中 k-i辆车放在M中
ans=(ans+A(a,i)%mod*C(b,i)%mod*A(a+c-i,k-i)%mod*C(d,k-i)%mod)%mod;
cout<<ans;
}

【题解】洛谷P1350 车的放置(矩阵公式推导)的更多相关文章

  1. 洛谷 P1350 车的放置

    洛谷 P1350 车的放置 题目描述 有下面这样的一个网格棋盘,a,b,c,d表示了对应边长度,也就是对应格子数. 当a=b=c=d=2时,对应下面这样一个棋盘 要在这个棋盘上放K个相互不攻击的车,也 ...

  2. 题解——洛谷P3390 【模板】矩阵快速幂(矩阵乘法)

    模板题 留个档 #include <cstdio> #include <algorithm> #include <cstring> #define int long ...

  3. P1350 车的放置

    P1350 车的放置 设$f[i][j]$为当前推到第$i$列,该列高度$h$,已经放了$j$个车的方案数 则$f[i][j]=f[i-1][j]+f[i-1][j-1]*(h-j+1)$ 但是我们发 ...

  4. 洛谷P3758/BZOJ4887 [TJOI2017] 可乐 [矩阵快速幂]

    洛谷传送门,BZOJ传送门 可乐 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 299  Solved: 207 Description 加里敦星球的人 ...

  5. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  6. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  7. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  8. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  9. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

随机推荐

  1. Rabbitmq~对Vhost的配置

    rabbitmq里有一些概念我们要清楚,如vhost,channel,exchange,queue等,而前段时间在部署rabbitmq环境时启用了虚拟主机vhost,感觉他主要是起到了消息隔离的作用, ...

  2. 新手 php连接数据库大概。简单过程浅析以及遇到的问题分析

    原文作者:aircraft 原文地址: https://www.cnblogs.com/DOMLX/p/8116845.html 重点:PHP运行在服务器上的请记住!!! 1.在连接数据库与PHP之前 ...

  3. org.springframework.dao.DataIntegrityViolationException: could not execute statement; SQL [n/a]; constraint [null]; nested exception is org.hibernate.

    今天报了这个异常,这是页面报的 org.springframework.dao.DataIntegrityViolationException: could not execute statement ...

  4. 搭架Ubuntu的 apt-cacher服务

    源服务器名称可能不太准确,意思是创建内网自己的私服,这样只要有Ubuntu通过该私服下载安装过软件,私服都会缓存,下一个Ubuntu的请求就直接从缓存中获取. 最近Ubuntu源服务器太慢了,北京的网 ...

  5. VS中为什么不同的项目类型属性查看和设置的界面不一样

    在VS中,存在ATL.MFC.Win32.CLR.常规等等各种工程模板,这些工程模板对应于开发不同类型的应用,比如要开发com,你应该选ATL:开发最原始的通过API代用操作系统的应用,应该用Win3 ...

  6. Java反射机制一 概念和简单的使用方法。

    一 概念 java反射机制属于 java动态性之一  ,指的是可以运行时加载,探知,使用编译期间完全未知的类,程序在运行状态中,可以动态的加载一个只有, 名称的类,对于任意一个已加载的类,都能够知道这 ...

  7. Java学习第十七天

    1:登录注册案例(理解) 2:Set集合(理解) (1)Set集合的特点 无序,唯一 (2)HashSet集合(掌握) A:底层数据结构是哈希表(是一个元素为链表的数组) B:哈希表底层依赖两个方法: ...

  8. 针对在webview模式中,小米魅族手机不支持html5原生video的control的解决办法![原创]

    其实,解决办法就是,重新写个control控制功能,.同样用流行的video.js可以实现 第一步就是增加个播放的图片..要不然没有按钮多难看! <div class="videoDi ...

  9. 2017年9月22日 关于JS数组

    JS数组 JS数组的定义方法 var arr = []; var arr = new Array() JS数组属性 长度 arr.length 遍历数组 索引值:从0开始数 第一种方法 for(var ...

  10. Objective C 中的nil,Nil,NULL和NSNull理解

    kenyo网友的原创说法是:做IOS开发的估计都对Objective-C的内存管理机制很头疼,一不小心程序就会出内存泄露,我也不例外,前几天被指针的置nil与release给搞惨了,今和大家详细解说一 ...