mapreduce实现搜索引擎简单的倒排索引
使用hadoop版本为2.2.0
倒排索引简单的可以理解为全文检索某个词
例如:在a.txt 和b.txt两篇文章分别中查找统计hello这个单词出现的次数,出现次数越多,和关键词的吻合度就越高
现有a.txt内容如下:
hello tom
hello jerry
hello kitty
hello world
hello tom
b.txt内容如下:
hello jerry
hello tom
hello world
在hadoop平台上编写mr代码分析统计各个单词在两个文本中出现的次数
其实也只是WordCount程序的改版而已~
将两个文本上传到hdfs根目录的ii文件夹下(mr直接读取ii文件夹,会读取所有没有以_(下划线)开头的文件)
编写mr代码
首先分析,map输入的格式为
该行偏移量 该行文本
如:
0 hello
我们知道,map的输出之后会根据相同的key来进行合并
而每个单词都不是唯一的,它可能在两个文本中都出现,使用单词作为key的话无法分辨出该单词属于哪个文本
而使用文本名字作为key的话,那么将达到我们原来的目的,因为map的输出就会变成a.txt->单词..单词..单词
这显然不是我们想要的结果
所以map输出的格式应该为
单个单词->所在文本 1
如:
hello->a.txt 1
这里用->作为单词和所在文本的分隔
这样就可以在根据key进行合并的时候不会影响到我们的结果
map代码如下:
public static class MyMapper extends Mapper<LongWritable, Text, Text, Text> { private Text k = new Text();
private Text v = new Text(); protected void map(
LongWritable key,
Text value,
org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, Text, Text>.Context context)
throws java.io.IOException, InterruptedException {
String[] data = value.toString().split(" ");
//FileSplit类从context上下文中得到,可以获得当前读取的文件的路径
FileSplit fileSplit = (FileSplit) context.getInputSplit();
//文件路径为hdfs://hadoop:9000/ii/a.txt
//根据/分割取最后一块即可得到当前的文件名
String[] fileNames = fileSplit.getPath().toString().split("/");
String fileName = fileNames[fileNames.length - 1];
for (String d : data) {
k.set(d + "->" + fileName);
v.set("1");
context.write(k, v);
}
};
}
在map执行完毕之后
我们需要一个combiner来帮助完成一些工作
注意,combiner的输入格式和输出格式是一致的,也就是map的输出格式,否则会出错
再次分析,根据key合并value之后的键值对是这个样子的:
(hello->a.txt,{1,1,1,1,1})
combiner要做的工作就是讲values统计累加
并将key的单词和文本分隔开,将文本名和统计之后的values组合在一起形成新的value
如:
(hello,a.txt->5)
为什么要这么做?
因为在combiner执行完毕之后
还会根据key进行一次value的合并,跟map之后的是一样的
将key相同的value组成一个values集合
如此一来,在经过combiner执行之后,到达reduce的输入就变成了
(hello,{a.txt->5,b.txt->3})
这样的格式,然后在reduce中循环将values输出不就是我们想要的结果了吗~
combiner代码如下:
public static class MyCombiner extends Reducer<Text, Text, Text, Text> { private Text k = new Text();
private Text v = new Text(); protected void reduce(
Text key,
java.lang.Iterable<Text> values,
org.apache.hadoop.mapreduce.Reducer<Text, Text, Text, Text>.Context context)
throws java.io.IOException, InterruptedException {
//分割文件名和单词
String[] wordAndPath = key.toString().split("->");
//统计出现次数
int counts = 0;
for (Text t : values) {
counts += Integer.parseInt(t.toString());
}
//组成新的key-value输出
k.set(wordAndPath[0]);
v.set(wordAndPath[1] + "->" + counts);
context.write(k, v);
};
}
接下来reduce的工作就简单了
代码如下:
public static class MyReducer extends Reducer<Text, Text, Text, Text> { private Text v = new Text(); protected void reduce(
Text key,
java.lang.Iterable<Text> values,
org.apache.hadoop.mapreduce.Reducer<Text, Text, Text, Text>.Context context)
throws java.io.IOException, InterruptedException {
String res = "";
for (Text text : values) {
res += text.toString() + "\r";
}
v.set(res);
context.write(key, v);
};
}
main方法代码:
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
Path inPath = new Path("hdfs://hadoop:9000" + args[0]);
Path outPath = new Path("hdfs://hadoop:9000" + args[1]);
if (fs.exists(outPath)) {
fs.delete(outPath, true);
}
Job job = Job.getInstance(conf);
job.setJarByClass(InverseIndex.class); FileInputFormat.setInputPaths(job, inPath);
job.setInputFormatClass(TextInputFormat.class); job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); job.setCombinerClass(MyCombiner.class); job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileOutputFormat.setOutputPath(job, outPath);
job.setOutputFormatClass(TextOutputFormat.class); job.waitForCompletion(true);
}
在hadoop上运行jar包执行结果如图:
初学hadoop,仅作笔记之用,其中如有错误望请告知^-^
mapreduce实现搜索引擎简单的倒排索引的更多相关文章
- [Search Engine] 搜索引擎技术之倒排索引
倒排索引是搜索引擎中最为核心的一项技术之一,可以说是搜索引擎的基石.可以说正是有了倒排索引技术,搜索引擎才能有效率的进行数据库查找.删除等操作. 1. 倒排索引的思想 倒排索引源于实际应用中需要根据属 ...
- ES搜索引擎-简单入门
基本概念: 索引Index es吧数据放到一个或者多个索引中,如果用关系型数据库模型对比,索引的地位与数据库实例(db)相当.索引存放和读取的基本单元是文档(document).es内部使用的是apa ...
- 国内最全最详细的hadoop2.2.0集群的MapReduce的最简单配置
简介 hadoop2的中的MapReduce不再是hadoop1中的结构已经没有了JobTracker,而是分解成ResourceManager和ApplicationMaster.这次大变革被称为M ...
- mapreduce on yarn简单内存分配解释
关于mapreduce程序运行在yarn上时内存的分配一直是一个让我蒙圈的事情,单独查任何一个资料都不能很好的理解透彻.于是,最近查了大量的资料,综合各种解释,终于理解到了一个比较清晰的程度,在这里将 ...
- [How to] MapReduce on HBase ----- 简单二级索引的实现
1.简介 MapReduce计算框架是二代hadoop的YARN一部分,能够提供大数据量的平行批处理.MR只提供了基本的计算方法,之所以能够使用在不用的数据格式上包括HBase表上是因为特定格式上的数 ...
- Hadoop(11)-MapReduce概述和简单实操
1.MapReduce的定义 2.MapReduce的优缺点 优点 缺点 3.MapReduce的核心思想 4.MapReduce进程 5.常用数据序列化类型 6.MapReduce的编程规范 用户编 ...
- MapReduce原理及简单实现
MapReduce是Google在2004年发表的论文<MapReduce: Simplified Data Processing on Large Clusters>中提出的一个用于分布 ...
- MapReduce应用案例--简单排序
1. 设计思路 在MapReduce过程中自带有排序,可以使用这个默认的排序达到我们的目的. MapReduce 是按照key值进行排序的,我们在Map过程中将读入的数据转化成IntWritable类 ...
- MapReduce应用案例--简单的数据去重
1. 设计思路 去重,重点就是无论某个数据在文件中出现多少次,最后只是输出一次就可以. 根据这一点,我们联想到在reduce阶段数据输入形式是 <key, value list>,只要是k ...
随机推荐
- gcc 簡單操作
gcc -c test.c 產出 test.o object file gcc -c test.c -o XXX 產出 XXX object file gcc test.c -o aaa 產出 aaa ...
- [转载]基于Redis的Bloomfilter去重(附Python代码)
前言: “去重”是日常工作中会经常用到的一项技能,在爬虫领域更是常用,并且规模一般都比较大.去重需要考虑两个点:去重的数据量.去重速度.为了保持较快的去重速度,一般选择在内存中进行去重. 数据量不大时 ...
- 使用maven构建第一个web项目
在eclipse中,正常创建maven项目后,发现在index.jsp中会报错,此时在pom.xml中加入如下依赖关系即可 <dependency> <groupId>java ...
- Oracle基础 12 对象 objects 同义词/序列/试图/索引
--创建同义词create public synonym employees for hr.employees; --公共同义词需要 create public synonym 权限 表的所有用户授 ...
- 《Java编程思想》笔记 第十九章 枚举类型
1.基本enum特征 所有创建的枚举类都继承自抽象类 java.lang.Enum; 一个枚举类,所有实例都要在第一句写出以 ,隔开. 如果只有实例最后可以不加 : 枚举类因为继承了Enum,所以再不 ...
- apt-get常用命令及工作原理
https://blog.csdn.net/mosquito_zm/article/details/63684608
- django CXRF介绍
CSRF(Cross-site request forgery)跨站请求伪造,是攻击者利用用户的身份操作用户帐户的一种攻击方式.和XSS攻击一样,存在巨大的危害性. 一.攻击方法 1.低级的CXRF攻 ...
- 【转-记】mysql总结
1 | 查询所有数据 select * from Info 查所有数据 select Code,Name from Info 查特定列 2 | 根据条件查 select * from Inf ...
- [thinkphp] ajaxReturn案例
javascript: <script> $('.ajax-post').click(function(){ var action_url=$('form').attr('action') ...
- ACM-ICPC国际大学生程序设计竞赛北京赛区(2017)网络赛
编号 名称 通过率 通过人数 提交人数 A√水题(队友写的 Visiting Peking University 91% 1122 1228 B— Reverse Suffix Array 57% 6 ...