hdu6155

题意

给出一个只由 \(01\) 组成的字符串 \(s\),有两种操作:

  1. 翻转区间 \([l, r]\)
  2. 查询区间 \([l, r]\) 有多少不同的子串

分析

首先考虑怎么统计区间有多少不同的子串。

\(dp[i][0]\) 表示以 \(s[i]=0\) 结尾的字符串的个数,\(dp[i][1]\) 同理。

若 \(s[i]=0\),有状态转移方程:\(dp[i + 1][0] = dp[i][0] + dp[i][1] + 1\),\(dp[i+1][1]=dp[i][1]\)。

\(dp[i][1]\) 同理。

那么答案就是 \(dp[len][0]+dp[len][1]\) 。

可以用矩阵递推:

\[\begin{bmatrix} dp[i][0] & dp[i][1] & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} dp[i + 1][0] & dp[i + 1][1] & 1 \end{bmatrix}
\]

又矩阵存在结合律,所以一段区间的查询,只需要求右边一系列乘数的乘积即可。

我们可以使用线段树,去区间求积。

对于翻转操作,先将第一列和第二列交换,再将第一行和第二行交换。因为 \(01\) 是相对的,只需要交换对应的值即可。

可以在线段树中标记是否需要翻转某个区间。

看完题解写完后,猛然发现,这竟是一道线段树区间更新区间求和的“模板题”。

code

#include<bits/stdc++.h>
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const int MOD = 1e9 + 7;
struct Matrix {
ll mat[3][3];
void init() {
memset(mat, 0, sizeof mat);
}
Matrix operator *(Matrix A) {
Matrix B;
B.init();
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
for(int k = 0; k < 3; k++) {
B.mat[i][j] += mat[i][k] * A.mat[k][j];
}
B.mat[i][j] %= MOD;
}
}
return B;
}
};
char s[MAXN];
int flip[MAXN << 2];
Matrix sum[MAXN << 2];
inline void magic(Matrix& A) { // 先将第一列和第二列交换,再将第一行和第二行交换
for(int i = 0; i < 3; i++) swap(A.mat[i][0], A.mat[i][1]);
for(int i = 0; i < 2; i++) swap(A.mat[0][i], A.mat[1][i]);
}
inline void pushUp(int rt) {
sum[rt] = sum[rt << 1] * sum[rt << 1 | 1];
}
inline void pushDown(int rt) {
if(flip[rt]) {
flip[rt << 1] ^= flip[rt];
flip[rt << 1 | 1] ^= flip[rt];
magic(sum[rt << 1]);
magic(sum[rt << 1 | 1]);
flip[rt] = 0;
}
}
void build(int l, int r, int rt) {
flip[rt] = 0;
if(l == r) {
Matrix& A = sum[rt];
if(s[l] == '0') {
A = Matrix{1, 0, 0, 1, 1, 0, 1, 0, 1};
} else {
A = Matrix{1, 1, 0, 0, 1, 0, 0, 1, 1};
}
return;
}
int m = (l + r) / 2;
build(lson);
build(rson);
pushUp(rt);
}
void update(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
flip[rt] ^= 1;
magic(sum[rt]);
return;
}
pushDown(rt);
int m = (l + r) / 2;
if(L <= m) update(L, R, lson);
if(R > m) update(L, R, rson);
pushUp(rt);
}
Matrix query(int L, int R, int l, int r, int rt) {
if(L <= l && r <= R) {
return sum[rt];
}
pushDown(rt);
int m = (l + r) / 2;
Matrix A;
A.init();
for(int i = 0; i < 3; i++) A.mat[i][i] = 1;
if(L <= m) A = A * query(L, R, lson);
if(R > m) A = A * query(L, R, rson);
pushUp(rt);
return A;
}
//适用于正整数
template <class T>
inline void scan_d(T &ret) {
char c; ret=0;
while((c=getchar())<'0'||c>'9');
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
}
int main() {
int T;
scanf("%d", &T);
int n, q;
while(T--) {
scanf("%d%d", &n, &q);
scanf("%s", s + 1);
build(1, n, 1);
while(q--) {
int type, l, r;
scan_d(type); scan_d(l); scan_d(r);
if(type == 1) update(l, r, 1, n, 1);
else {
Matrix A = query(l, r, 1, n, 1);
printf("%lld\n", (A.mat[2][0] + A.mat[2][1]) % MOD);
}
}
}
return 0;
}

hdu6155的更多相关文章

  1. [HDU6155]Subsequence Count(线段树+矩阵)

    DP式很容易得到,发现是线性递推形式,于是可以矩阵加速.又由于是区间形式,所以用线段树维护. https://www.cnblogs.com/Miracevin/p/9124511.html 关键在于 ...

  2. [HDU6155]Subsequence Count

    题目大意: 给定一个01序列,支持以下两种操作: 1.区间反转: 2.区间求不同的子序列数量. 思路: 首先我们考虑区间反转,这是一个经典的线段树操作. 接下来考虑求不同的子序列数量,在已知当前区间的 ...

  3. 洛谷T21776 子序列

    题目描述 你有一个长度为 nn 的数列 \{a_n\}{an​} ,这个数列由 0,10,1 组成,进行 mm 个的操作: 1~l~r1 l r :把数列区间 [l, r][l,r] 内的所有数取反. ...

随机推荐

  1. [Leetcode] rotate image 旋转图片

    You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). ...

  2. 用npm安装express时报proxy的错误的解决方法

    首先要说明一点:当使用npm install <module-name>时安装组件时,安装的目录是cmd的目录+node_modules+组件名 例子如下:假如你现在安装express这个 ...

  3. springboot之mybatis别名的设置

    mybatis别名设置 在具体的mapper.xml文件中,定义很多的statement,statement需要parameterType指定输入参数的类型.需要resultType指定输出结果的映射 ...

  4. Ubuntu1604 install netease-cloud music

    Two issue: 1. There is no voice on my computer, and the system was mute and cannot unmute. eric@E641 ...

  5. windows下maven打包eclipse工程

    打包过程中,可能出现的2个问题: ①.[WARNING] File encoding has not been set, using platform encoding GBK, i.e. build ...

  6. 51Nod 1212无向图最小生成树

    prim #include<stdio.h> #include<string.h> #define inf 0x3f3f3f3f ][]; ],lowc[]; ],int n) ...

  7. 【BZOJ3624】【APIO2008】免费道路 [生成树][贪心]

    免费道路 Time Limit: 2 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input Output Sampl ...

  8. unity下的Line of Sight(LOS)的绘制

    先说说什么是Linf of Sight.在很多RTS游戏中,单位与单位之间的视野关系经常会受到障碍物遮挡.Line of Sight指的就是两个物体之间是否没有障碍物遮挡. 比如在dota中,玩家的视 ...

  9. ajax获取django的csrf_token

    ''' 方法一: data: { 'teamid': teamid, csrfmiddlewaretoken: '{{ csrf_token }}' //data: {name: 'john', cs ...

  10. python基础代码(猜年龄、从最内层跳出多层循环、简单的购物车程序)

    1.猜年龄 , 可以让用户最多猜三次! age = 55 i=0 while i<3: user_guess = int (input ("input your guess:" ...