nyoj 364——田忌赛马——————【贪心】
田忌赛马
- 描述
- Here is a famous story in Chinese history.
"That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others."
"Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser."
"Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian."
"Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match."
"It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?"
Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching...
However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem.
In this problem, you are asked to write a program to solve this special case of matching problem.
- 输入
- The input consists of many test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses.
- 输出
- For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.
- 样例输入
-
3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18 - 样例输出
-
200
0
0 题目大意:给田忌n匹马,给国王n匹马,输一轮减少200块钱,赢一轮增加200块钱,平局不奖惩。问最后最多能得到多少钱。 解题思路:如果田忌的慢马能赢国王的,就赢。如果比国王的慢,就拉国王的最快的马比,反正输,不如输的更有价值,为后边的马减小阻力。如果慢马一样快,首先看田忌的最快的马是不是比国王最快的马快,如果是就先让最快的马赢一局。如果不是,就让田忌的最慢的马跟国王的最快的马比较是不是相等,如果不是,那么就输一局;如果是,就让田忌最慢的马跟国王最快的马平局。#include<bits/stdc++.h>
using namespace std;
int tj[1100],king[1100];
int main(){
int t,i,j,k,tmp,sum,cnt,n,m,tslow,tfast,kslow,kfast;
while(scanf("%d",&n)!=EOF){
memset(tj,0,sizeof(tj));
memset(king,0,sizeof(king));
for(i=0;i<n;i++){
scanf("%d",&tj[i]);
}
for(i=0;i<n;i++){
scanf("%d",&king[i]);
}
sort(tj,tj+n);
sort(king,king+n);
tslow=kslow=0;
tfast=kfast=n-1;
m=k=0;
while(m<n){
if(tj[tslow]>king[kslow]){ //田忌慢马比国王慢马快
tslow++;
kslow++;
k++;
}else if(tj[tslow]<king[kslow]){//田忌慢马比国王慢马慢
tslow++;
kfast--;
k--;
}else{//两人慢马同速
if(tj[tfast]>king[kfast]){//田忌快马比国王快马快
tfast--;
kfast--;
k++;
}else {//田忌快马慢于或等于国王快马
if(tj[tslow]<king[kfast]){//田忌慢马比国王快马慢
kfast--;
tslow++;
k--;
}else if(tj[tslow]==king[kfast]){//田忌慢马等于国王快马
tslow++;
kfast--;
}
}
}
m++;
}
cout<<k*200<<endl;
}
return 0;
}
/*
5
8 6 5 1 3
9 7 6 4 2
*/
nyoj 364——田忌赛马——————【贪心】的更多相关文章
- nyoj 364 田忌赛马(贪心)
田忌赛马 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Here is a famous story in Chinese history. "That ...
- NYOJ 364 田忌赛马
田忌赛马 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描写叙述 Here is a famous story in Chinese history. "That ...
- POJ 2287 田忌赛马 贪心算法
田忌赛马,大致题意是田忌和国王赛马,赢一局得200元,输一局输掉200元,平局则财产不动. 先输入一个整数N,接下来一行是田忌的N匹马,下一行是国王的N匹马.当N为0时结束. 此题为贪心算法解答,有两 ...
- hdu1052(田忌赛马 贪心)
好坑的一道题,不过确实是贪心的一道好题,想了好久一直无法解决平局的情况. 参考了别人的思路,然后结合了自己的想法,总算是想出来了. 这题有些步骤是必须要执行的,有四个步骤 一.当期状态田忌的最慢的马 ...
- HDU 1052(田忌赛马 贪心)
题意是田忌赛马的背景,双方各有n匹马,下面两行分别是田忌和齐王每匹马的速度,要求输出田忌最大的净胜场数*每场的赌金200. 开始的时候想对双方的马匹速度排序,然后比较最快的马,能胜则胜,否则用最慢的马 ...
- [POJ2287][Tyvj1048]田忌赛马 (贪心+DP)
瞎扯 很经典的一道题 考前才打 我太菜了QAQ 就是先贪心排序了好 然后在DP 这样比直接DP更容易理解 (其实这题做法还有很多) 代码 #include<cstdio> #include ...
- hdu1052 田忌赛马 —— 贪心
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1052 错误代码: #include<stdio.h>//田忌赛马,错误版 #include ...
- poj 1328 Radar Installation(nyoj 287 Radar):贪心
点击打开链接 Radar Installation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 43490 Accep ...
- luogu P1650 田忌赛马 |贪心
题目描述 我国历史上有个著名的故事: 那是在2300年以前.齐国的大将军田忌喜欢赛马.他经常和齐王赛马.他和齐王都有三匹马:常规马,上级马,超级马.一共赛三局,每局的胜者可以从负者这里取得200银币. ...
随机推荐
- Java高质量代码之 — 泛型与反射
在Java5后推出了泛型,使我们在编译期间操作集合或类时更加的安全,更方便代码的阅读,而让身为编译性语言的Java提供动态性的反射技术,更是在框架开发中大行其道,从而让Java活起来,下面看一下在使用 ...
- 《C#多线程编程实战》2.5 AutoResetEvent
这个有点像是缩小版的mutex 还是很好理解的 相对mutex 使用的范围可能比较小一点. class Program { static AutoResetEvent work = new AutoR ...
- Selenium API(二)
1.定位一组元素 WebDriver提供了8种定位一组元素的方法. driver.find_elements_by_css_selector() driver.find_elements_by_tag ...
- c++多线程基础2(命名空间 this_thread)
整理自:zh.cppreference.com/w/cpp/thread std::this_thread::yield: 定义于头文件 <thread> 函数原型:void yield( ...
- 堆排序 思想 JAVA实现
已知数组 79.52.48.51.49.34.21.3.26.23 ,请采用堆排序使数组有序. “什么是堆” 堆是一颗完全二叉树,N层完全二叉树是一颗,除N-1层外其节点数都达到最大,且第N层子节点全 ...
- 品味ZooKeeper之纵古观今_1
品味ZooKeeper之纵古观今 本章思维导图 这一系列主要是从整体到细节来品味Zookeeper,先从宏观来展开,介绍zookeeper诞生的原因,接着介绍整体设计框架,接着是逐个细节击破. 本章是 ...
- 使用window.name 进行数据跨域传递
其中要点, Stpe1,浏览器在Iframe中加载一个异域的页面,这个页面返回 <script>window.name="任何数据"</script>,这时 ...
- ScrollView-电影列表
ScrollView 的使用import React, { Component } from 'react';import { Platform, StyleSheet, Text, View, Sc ...
- Jmeter函数作用域实时取值覆盖[针对HTTP Request等控制器]
jmeter的属性和变量可以简单理解为编程里面的全局变量和局部变量.属性是全局可见,可以跨线程组传递调用,而变量基本上只能存在于一个线程组中(在测试计划定义的变量也是可以跨线程组传递的).同线程组内的 ...
- BZOJ - 4520 K远点对
题意:已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对 维护大小为2k最小堆,KD树的估值用前面提到的做法 PS.网上有人估价是使用边界四个点的最值来独立枚举,然而这样写似乎过不了 #incl ...