Maths Intro - Probability
设事件A,B,C两辆独立,且满足ABC=空集,及P(A)=P(B)=P(C)=x,求max(x)
x最大值为1/2
分析:
x值要保证所有的由A、B、C交或并得到的集合的概率测度在0到1之间.
先考虑A∪B∪C:
P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)
因为ABC=空集,则P(ABC)=0
而A、B、C两两之间相互独立,则P(AB)=P(A)P(B) P(BC)=P(B)P(C)
P(CA)=P(C)P(A)
所以有: P(A∪B∪C)=3x-3x²
而0≤P(A∪B∪C)≤1
则0≤3x-3x²≤1
左边不等式解得:0≤x≤1
右边不等式解得:x∈R
则0≤x≤1
其次考虑A∪B:
P(A∪B)=P(A)+P(B)-P(AB)=2x-x²
则0≤2x-x²≤1
解得:0≤x≤1/2
同理考虑B∪C、C∪A得到的结果一样
再考虑A∪BC:
P(A∪BC)=P(A)+P(BC)-P(ABC)=x+x²
则0≤x+x²≤1
解得:0≤x≤(-1+√5)/2
同理考虑B∪AC、C∪AB得到的结果一样
最后考虑ABC、AB、BC、CA,对x无要求
综上所述:0≤x≤1/2
则 max(x)=1/2
(说明:还可以考虑具有包含关系的集合的概率测度大小,但计算后发现对结果没有影响,这里就不写上去了)
Maths Intro - Probability的更多相关文章
- Intro to CSS 3D transforms
原文地址:Intro to CSS 3D transforms,本文只是翻译了其中的一部分,省去了作者写文章的原因浏览器兼容部分(已经过时) Perspective 元素需要设置需要设置perspec ...
- 【BZOJ2318】Spoj4060 game with probability Problem 概率
[BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...
- Fuzzy Probability Theory---(3)Discrete Random Variables
We start with the fuzzy binomial. Then we discuss the fuzzy Poisson probability mass function. Fuzzy ...
- Fuzzy Probability Theory---(2)Computing Fuzzy Probabilities
Let $X=\{x_1,x_2,...,x_n\}$ be a finite set and let $P$ be a probability function defined on all sub ...
- Intro.js 网站演示
Intro.js 为您的网站和项目提供一步一步的.更好的介绍 使用简单 引入 js 和 css,然后在代码中加入步骤和介绍. 快速小巧 7 KB 的 JavaScript 和 3 KB CSS,就是全 ...
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
随机推荐
- cmake笔记
注:cmake . 当前文件夹(一个点) cmake .. 父目录(两个点) 例子一 一个经典的C程序,如何用cmake来进行构建程序呢? //main.c #include <stdi ...
- DELPHI XE5轻松输出到MacOsX
配置:MACOSX10.9.3 +XCODE5.1 + VBOX + WINXP + DELPHI XE 5UP2 配置步骤从略. 1.选择firemonkey desktop application ...
- Func和Action的介绍及其用法
Func是一种委托,这是在3.5里面新增的,2.0里面我们使用委托是用Delegate,Func位于System.Core命名空间下,使用委托可以提升效率,例如在反射中使用就可以弥补反射所损失的性能. ...
- angular 重定向路由
const routes: Routes = [ { path: '', redirectTo: '/home', pathMatch: 'full' }, { path: 'home', compo ...
- 【leetcode 144. 二叉树的前序遍历】解题报告
前往二叉树的:前序,中序,后序 遍历算法 方法一:递归 vector<int> res; vector<int> preorderTraversal(TreeNode* roo ...
- DISCUZ 各数据库表作用
链接原文:http://forum.digitser.cn/forum.php?mod=viewthread&tid=179 DISCUZ数据字典 http://w ...
- hosts是什么意思?Hosts文件有什么作用和功能?
hosts是什么意思?Hosts文件有什么作用和功能? 熟悉网络的朋友们都会用到hosts文件,针对还不清楚hosts是什么意思以及hosts文件有什么功能和作用?针对此问题,本文就为大家进行解答 ...
- loj#6436. 「PKUSC2018」神仙的游戏(NTT)
题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...
- 洛谷P3355 骑士共存问题(最小割)
传送门 de了两个小时的bug愣是没发现错在哪里……没办法只好重打了一遍竟然1A……我有点想从这里跳下去了…… 和方格取数问题差不多,把格子按行数和列数之和的奇偶性分为黑的和白的,可以发现某种颜色一定 ...
- iOS 开发之 GCD 基础
header{font-size:1em;padding-top:1.5em;padding-bottom:1.5em} .markdown-body{overflow:hidden} .markdo ...