SCOI2008奖励关 [状压dp]
题目描述
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。
宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。
获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。
假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
输入输出格式
输入格式:
第一行为两个正整数k 和n,即宝物的数量和种类。以下n行分别描述一种
宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各
宝物编号为1到n),以0结尾。
输出格式:
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
输入输出样例
输入样例#1:
1 2
1 0
2 0
输出样例#1:
1.500000
输入样例#2:
6 6
12 2 3 4 5 0
15 5 0
-2 2 4 5 0
-11 2 5 0
5 0
1 2 4 5 0
输出样例#2:
10.023470
说明
1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数。
题解
这是一道状压dp题,数据范围很小,只有15(很标准啊)
首先,解释一下题意,会有k个宝物掉下,共n种,所以每次每种宝物掉下的概率都是1/n,而题目最后说的最优策略是指这次掉下的宝物,你可以不选,这是因为它的贡献是负数且它对后面的宝物是没用的,平均情况是指每次掉下每种宝物的情况都是1/n,所以我们要将所得的期望得分/n,即
本轮期望=(上一轮期望+本轮得分)/n
而正向推的话可能会出现从合法情况推到不合法的情况,那么这种情况乱再推也是没用的,所以我们倒着推,保证统计结果时一定合法(听说最优策略的期望dp都是倒着推???),那么结果最后就保存在dp[1][0]
设dp[i][j]表示第i轮已经收集的宝物集合j的期望
那么状态转移方程就变成了这样
if(本宝物可以收集)
dp[i][j]+=max(dp[i+1][j],dp[i+1][j|1<<(k-1)]+v[k])/n//v[]表示宝物价值
else
dp[i][j]+=dp[i+1][j]/n;
#include<bits/stdc++.h>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=;
char i=getchar();
while(i<'' || i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>='' && i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
int m,n;
int cur[];
int v[];
double dp[][];
int main()
{
in(m);in(n);
for(int i=;i<=n;i++)
{
in(v[i]);
int u;
in(u);
while(u)
{
cur[i]|=<<(u-);
in(u);
}
}
int tot=<<n;
for(int i=m;i>=;i--)
{
for(int j=;j<tot;j++)
{
for(int k=;k<=n;k++)
{
if((cur[k]&j)==cur[k]) dp[i][j]+=max(dp[i+][j],dp[i+][j|<<(k-)]+v[k])/n;
else dp[i][j]+=dp[i+][j]/n;
}
// dp[i][j]/=n;
}
}
printf("%0.6lf\n",dp[][]);
return ;
}
#include<bits/stdc++.h>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=;
char i=getchar();
while(i<'' || i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>='' && i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
int m,n;
int cur[];
int v[];
double dp[][];
int main()
{
in(m);in(n);
for(int i=;i<=n;i++)
{
in(v[i]);
int u;
in(u);
while(u)
{
cur[i]|=<<(u-);
in(u);
}
}
int tot=<<n;
for(int i=m;i>=;i--)
{
for(int j=;j<tot;j++)
{
for(int k=;k<=n;k++)
{
if((cur[k]&j)==cur[k]) dp[i][j]+=max(dp[i+][j],dp[i+][j|<<(k-)]+v[k])/n;
else dp[i][j]+=dp[i+][j]/n;
}
// dp[i][j]/=n;
}
}
printf("%0.6lf\n",dp[][]);
return ;
SCOI2008奖励关 [状压dp]的更多相关文章
- 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望
[BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...
- B1076 [SCOI2008]奖励关 状压dp&&期望dp
这个题的n<15,一看就是状压dp.但是状态不是很好想.f[][]存i关的状态j. 这个题另一个关键思想在于倒推,我一开始想的是正推,但是只能记忆化了. 题干: 题目描述 你正在玩你最喜欢的电子 ...
- [BZOJ1076][SCOI2008]奖励关 状压dp
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3070 Solved: 1595[Submit][Statu ...
- BZOJ1076:[SCOI2008]奖励关(状压DP,期望)
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...
- 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)
题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...
- 洛谷P2473奖励关——状压DP
题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...
- [SCOI2008]奖励关 - 状压动规 - 概率与期望
Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...
- 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】
P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...
- [SCOI2008]奖励关(期望dp)
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...
随机推荐
- CONCATENATE命令(文字列の結合)
CONCATENATE命令とは文字列の結合を行う命令である.文字列を扱うChar, Numeric, Dats, Time, Stringの変数で使用する事が可能だ.単純に文字列の結合のみを行う方法. ...
- docker制作jdk+tomcat镜像
docker部署TOMCAT项目 一.内核升级 [root@test01 ~]# uname -r #内核查看确认 2.6.32-696.16.1.el6.x86_64 [root@test01 ...
- java练习题——类与对象
一.请依据代码的输出结果,自行总结Java字段初始化的规律 public static void main(String[] args) { InitializeBlockClass obj=new ...
- Dubbo原理及配置
技术交流群:233513714 Dubbo的背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进 ...
- 在Go语言里检测内存泄漏
我们先来设定一下数据库,建立一个MySQL数据库表,名为users,里面有login_name.nickname.uid.password.forbidden几个字段,其中uid与forbidden为 ...
- 3,SQL语句及数据库优化
1,统一SQL语句的写法 对于以下两句SQL语句,程序员认为是相同的,数据库查询优化器认为是不同的. 所以封装成复用方法,用标准模板来控制. select*from dual select*Fr ...
- 链接程序的时候遇到问题:fatal error LNK1104: cannot open file 'rctrl-d.lib'
1.lib库文件没有添加到工程中(工程里面根本就没有这个文件) 2.
- spring 给静态变量注入值
一般在spring中,给static变量加上@Autowired注解的时候会报空指针异常错误. 解决: 1.通过xml配置文件配置 这个就不多说了. 2.通过注解 @Component public ...
- 「日常训练」Phone Numbers (CFR466D2C)
题意(Codeforces 940C) 给定一字符串,求比它字典序大的字符串.限定其长度,并且只能用原串的字母. 分析 考虑原串长度lorigin与给定的长度lgiven.若给定长度大于原串长度,直接 ...
- Qt 实现脉搏检测-2,简陋的功能产品
今天终于可以接上硬件来显示真是的脉搏情况了,上图 主要就是显示脉搏的心跳曲线,和IBI 数据来源是三个,串口,网口和蓝牙,目前只实现了串口,过程应该都是差不多的,监听,读取,解析,等硬件更新后,再次更 ...