题目描述

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。

宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。

获取第 i 种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。

假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

输入输出格式

输入格式:

第一行为两个正整数k 和n,即宝物的数量和种类。以下n行分别描述一种

宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各

宝物编号为1到n),以0结尾。

输出格式:

输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

输入输出样例


输入样例#1:

1 2
1 0
2 0

输出样例#1:

1.500000


输入样例#2:

6 6
12 2 3 4 5 0
15 5 0
-2 2 4 5 0
-11 2 5 0
5 0
1 2 4 5 0

输出样例#2:

10.023470


说明

1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数。


题解

这是一道状压dp题,数据范围很小,只有15(很标准啊)

首先,解释一下题意,会有k个宝物掉下,共n种,所以每次每种宝物掉下的概率都是1/n,而题目最后说的最优策略是指这次掉下的宝物,你可以不选,这是因为它的贡献是负数且它对后面的宝物是没用的,平均情况是指每次掉下每种宝物的情况都是1/n,所以我们要将所得的期望得分/n,即

本轮期望=(上一轮期望+本轮得分)/n

而正向推的话可能会出现从合法情况推到不合法的情况,那么这种情况乱再推也是没用的,所以我们倒着推,保证统计结果时一定合法(听说最优策略的期望dp都是倒着推???),那么结果最后就保存在dp[1][0]

设dp[i][j]表示第i轮已经收集的宝物集合j的期望

那么状态转移方程就变成了这样

if(本宝物可以收集)

  dp[i][j]+=max(dp[i+1][j],dp[i+1][j|1<<(k-1)]+v[k])/n//v[]表示宝物价值

else

  dp[i][j]+=dp[i+1][j]/n;

 #include<bits/stdc++.h>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=;
char i=getchar();
while(i<'' || i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>='' && i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
int m,n;
int cur[];
int v[];
double dp[][];
int main()
{
in(m);in(n);
for(int i=;i<=n;i++)
{
in(v[i]);
int u;
in(u);
while(u)
{
cur[i]|=<<(u-);
in(u);
}
}
int tot=<<n;
for(int i=m;i>=;i--)
{
for(int j=;j<tot;j++)
{
for(int k=;k<=n;k++)
{
if((cur[k]&j)==cur[k]) dp[i][j]+=max(dp[i+][j],dp[i+][j|<<(k-)]+v[k])/n;
else dp[i][j]+=dp[i+][j]/n;
}
// dp[i][j]/=n;
}
}
printf("%0.6lf\n",dp[][]);
return ;
}
 #include<bits/stdc++.h>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=;
char i=getchar();
while(i<'' || i>'')
{
if(i=='-') f=-;
i=getchar();
}
while(i>='' && i<='')
{
ans=(ans<<)+(ans<<)+i-'';
i=getchar();
}
return ans*f;
}
int m,n;
int cur[];
int v[];
double dp[][];
int main()
{
in(m);in(n);
for(int i=;i<=n;i++)
{
in(v[i]);
int u;
in(u);
while(u)
{
cur[i]|=<<(u-);
in(u);
}
}
int tot=<<n;
for(int i=m;i>=;i--)
{
for(int j=;j<tot;j++)
{
for(int k=;k<=n;k++)
{
if((cur[k]&j)==cur[k]) dp[i][j]+=max(dp[i+][j],dp[i+][j|<<(k-)]+v[k])/n;
else dp[i][j]+=dp[i+][j]/n;
}
// dp[i][j]/=n;
}
}
printf("%0.6lf\n",dp[][]);
return ;

SCOI2008奖励关 [状压dp]的更多相关文章

  1. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  2. B1076 [SCOI2008]奖励关 状压dp&&期望dp

    这个题的n<15,一看就是状压dp.但是状态不是很好想.f[][]存i关的状态j. 这个题另一个关键思想在于倒推,我一开始想的是正推,但是只能记忆化了. 题干: 题目描述 你正在玩你最喜欢的电子 ...

  3. [BZOJ1076][SCOI2008]奖励关 状压dp

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3070  Solved: 1595[Submit][Statu ...

  4. BZOJ1076:[SCOI2008]奖励关(状压DP,期望)

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的 ...

  5. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  6. 洛谷P2473奖励关——状压DP

    题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那 ...

  7. [SCOI2008]奖励关 - 状压动规 - 概率与期望

    Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝 ...

  8. 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】

    P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...

  9. [SCOI2008]奖励关(期望dp)

    你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...

随机推荐

  1. django的查询集

    查询集表示从数据库中获取的对象集合,在管理器上调用某些过滤器方法会返回查询集,查询集可以含有零个.一个或多个过滤器.过滤器基于所给的参数限制查询的结果,从Sql的角度,查询集和select语句等价,过 ...

  2. go学习笔记-基础类型

    基础类型 布尔值 布尔值的类型为bool,值是true或false,默认为false. //示例代码 var isActive bool // 全局变量声明 var enabled, disabled ...

  3. (数据科学学习手札27)sklearn数据集分割方法汇总

    一.简介 在现实的机器学习任务中,我们往往是利用搜集到的尽可能多的样本集来输入算法进行训练,以尽可能高的精度为目标,但这里便出现一个问题,一是很多情况下我们不能说搜集到的样本集就能代表真实的全体,其分 ...

  4. 【转】Linux系统安装Redis详细过程

    本文来源 https://blog.csdn.net/qq_20989105/article/details/76390367 ,转载前请先联系原作者并声明出处. 一.安装gcc 1.Redis在li ...

  5. 理解Canvas像素边界

    大家看下面的例子 var context = document.getElementById('canvas').getContext('2d'); context.lineWidth = 1; co ...

  6. Mysql自学笔记

    SQL(strucut query language) DDL (数据库定义语言)DML (数据库操作语言)DCL (数据库的控制语言)DTL (数据库的高级语言)查看版本的函数select vers ...

  7. Dos命令%date:~0,10%

    在使用命令对数据库备份的时候,想让备份的文件以当天的日期命名.需要获取当天的日期,获取当天的日期用date命令,获取当天的时间用time命令.但时间和日期一般都是有一定格式的,而使用的时候,是不想用那 ...

  8. 项目总结(二)->一些常用的工具浅谈

    程序员是否应该沉迷于一个编程的世界,为了磨砺自己的编程技能而两耳不闻窗外事,一心只为写代码:还是说要做到各有涉猎,全而不精.关于这点每个人心中都有一套自己的工作体系和方法体系. 我一直认为,程序员你首 ...

  9. 【个人训练】The Cow Lexicon(POJ-3267)

    继续大战dp.2018年11月30日修订,更新一下现在看到这个题目的理解(ps:就现在,poj又503了). 题意分析 这条题目的大意是这样的,问一字符串内最少删去多少的字符使其由给定的若干字符串构成 ...

  10. PHP管理供下载的APK文件

    当我们开发的APP多的时候,把所有的APK文件统一放到一个目录中管理,是一个不错的选择: 管理的方法有很多,这里说一种: 1..创建目录结构,先创建根目录download,在根目录中创建项目目录,在项 ...