Exponial~(欧拉函数)~(发呆题)
Description
Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:
- Exponentiation: 422016=42⋅42⋅...⋅422016 times422016=42⋅42⋅...⋅42⏟2016 times.
- Factorials: 2016!=2016 ⋅ 2015 ⋅ ... ⋅ 2 ⋅ 1.

In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all positive integers n as
exponial(n)=n(n − 1)(n − 2)⋯21
For example, exponial(1)=1 and exponial(5)=54321 ≈ 6.206 ⋅ 10183230 which is already pretty big. Note that exponentiation is right-associative: abc = a(bc).
Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computesexponial(n) mod m (the remainder of exponial(n) when dividing by m).
Input
There will be several test cases. For the each case, the input consists of two integers n (1 ≤ n ≤ 109) and m (1 ≤ m ≤ 109).
Output
Output a single integer, the value of exponial(n) mod m.
Sample Input
2 42
5 123456789
94 265
Sample Output
2
16317634
39
Hint
Source
NCPC 2016
这题题意很容易懂 但是数学不好,只能看看。
在没做这题之前我都不知道有欧拉函数这个东西
AB mod C=AB mod φ(C)+φ(C) mod C(B>φ(C))
φ(C)表示小于等于C和C互质的数目。
此处只是提供一个模板,等我对欧拉函数了解后,
我会写一篇详细的关于欧拉函数的详解。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
using namespace std;
const int maxn =1e5+;
typedef long long ll;
ll n,m,ans;
ll euler(ll n)
{
ll res=n,a=n;
for (ll i= ;i*i <=a ;i++ ){
if (a%i==) {
res=res/i*(i-);
while(a%i==) a/=i;
}
}
if (a>) res=res/a*(a-);
return res;
}
ll modexp(ll a,ll b,ll c)
{
ll res=;
while(b){
if (b&) res=res*a%c;
a=a*a%c;
b=b>>;
}
return res;
}
ll getans(ll n,ll m )
{
if (m==) return ;
if (n==) return ;
else if (n==) return %m;
else if (n==) return %m;
else if (n==) return modexp(,,m);
else {
ll phi=euler(m);
ll z=getans(n-,phi);
ans=modexp(n,phi+z,m);
}
return ans;
}
int main() {
while(scanf("%lld%lld",&n,&m)!=EOF){
printf("%lld\n",getans(n,m));
}
return ;
}
Exponial~(欧拉函数)~(发呆题)的更多相关文章
- UVA 10820 欧拉函数模板题
这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...
- POJ 2407 Relatives(欧拉函数入门题)
Relatives Given n, a positive integer, how many positive integers less than n are relatively prime t ...
- hdu 1286 找新朋友 欧拉函数模版题
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Des ...
- (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)
题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- poj2407(欧拉函数模板题)
题目链接:https://vjudge.net/problem/POJ-2407 题意:给出n,求0..n-1中与n互质的数的个数. 思路:欧拉函数板子题,先根据唯一分解定理求出n的所有质因数p1,p ...
- hdu1286(找新朋友)&&POJ2407Relatives(欧拉函数模版题)
http://acm.hdu.edu.cn/showproblem.php?pid=1286 没什么好说的,模板题,主要是弄懂欧拉函数的思想. #include <iostream> #i ...
- XDU 1098 (欧拉函数模板题)
原题链接,点击此处 欧拉函数:φ(N)表示对一个正整数N,欧拉函数是小于N且与N互质的数的个数 通式:φ(x) = x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/p ...
- HDU 6322.Problem D. Euler Function -欧拉函数水题(假的数论题 ̄▽ ̄) (2018 Multi-University Training Contest 3 1004)
6322.Problem D. Euler Function 题意就是找欧拉函数为合数的第n个数是什么. 欧拉函数从1到50打个表,发现规律,然后勇敢的水一下就过了. 官方题解: 代码: //1004 ...
- 【BZOJ4173】数学 欧拉函数神题
[BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...
- 【poj 2407】Relatives(数论--欧拉函数 模版题)
题意就是求10^9以内的正整数的欧拉函数(Φ(n)表示<=n的与n互质的正整数个数). 解法:用欧拉筛和欧拉函数的一些性质: 1.若p是质数,Φ(p)=p-1: 2.欧拉函数是积性函 ...
随机推荐
- (数据科学学习手札27)sklearn数据集分割方法汇总
一.简介 在现实的机器学习任务中,我们往往是利用搜集到的尽可能多的样本集来输入算法进行训练,以尽可能高的精度为目标,但这里便出现一个问题,一是很多情况下我们不能说搜集到的样本集就能代表真实的全体,其分 ...
- MFC接收ShellExecute多个参数
在应用程序开发过程中,我们经常需要带参数启动另一个执行程序,如何传递多个参数,如何解析多个参数呢? 传参数 传递参数可使用ShellExecute函数,示例如下: ShellExecute(NUL ...
- Spark是什么
官方直达电梯 Spark一种基于内存的通用的实时大数据计算框架(作为MapReduce的另一个更优秀的可选的方案) 通用:Spark Core 用于离线计算,Spark SQL 用于交互式查询,Spa ...
- nginx location优先级
目录 1. 配置语法 2. 配置实例 3. 总结: 网上查了下location的优先级规则,但是很多资料都说的模棱两可,自己动手实地配置了下,下面总结如下. 1. 配置语法 1> 精确匹配 lo ...
- asp.net 模拟CURL调用微信公共平台API 上传下载多媒体文件接口
FormItem类 public class FormItem { public string Name { get; set; } public ParamType ParamType { get; ...
- asp.net webapi 使用小结
一星期前公司用webapi处理一些事情,自己总结一下用法. 1.创建一个空的webapi会默认有一下几个方法. public class ValueController : ApiController ...
- pytest 测试报告
测试报告 运行测试用例后,为了保存结果,我们需要生成测试报告,同时可以把运行的测试报告发送相关人员查阅,这时需要安装一个插件(pytest-html) pytest-html插件安装 pip inst ...
- Python 套接字的使用 (1)
获取设备名称和IPv4地址 socket.gethostname() socket.gethostbyname(host_name) def print_machine_info(): host_ ...
- cocos2d-x 场景切换
场景切换的方法 场景切换是通过导演类director实现的,其中的相关方法如下: director.run(new_scene).该方法可以运行场景,只能在启动第一个场景时调用该方法.如果已运行场景, ...
- Python全栈 MongoDB 数据库(数据的查找)
非关系型数据库和关系型数据库的区别? 不是以关系模型构建的,结构自由 非关系型数据库不保证数据一致性 非关系型数据库可以在处理高并发和海量数据时弥补关系数据库的不足 非关系型数据库在技术上没有关系 ...