题意:

  统计每个数的因子的对数,如果因子能被某个平方数整除,则不统计在内,每对因子有序

解析:

  我们对某个数n进行质因子分解,如果某个质因子的指数大于2则 f(n) = 0,

例 N = X3 * M = R * T

因为要分成两部分 所以无论怎样分 R 或 T 总有一部分X的指数大于等于2

如果指数为2 则只能是R 和 T 两部分每个部分有一个X,所以只有一种情况,贡献为1

如果指数为1 则这个X可以在R 和 T的任意一部分 ,所以有两种情况

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int prime[maxn+];
int minprime[maxn+];
LL a[maxn+]; void get_prime()
{
mem(prime, );
for(int i=; i<=maxn; i++)
{
if(!prime[i]) prime[++prime[]] = i, minprime[i] = i;
for(int j=; j<=prime[] && prime[j] <= maxn/i; j++)
{
prime[prime[j]*i] = ;
minprime[prime[j]*i] = prime[j];
if(i % prime[j] == ) break;
}
}
} void init()
{
a[] = ;
a[] = ;
for(int i=; i<=maxn; i++)
{
int mm = minprime[i];
if((LL)mm*mm < maxn && (LL)mm*mm*mm < maxn && i%(mm*mm*mm) == )
a[i] = ;
else if((LL)mm*mm < maxn && i%(mm*mm) == ) a[i] = a[i/mm/mm];
else a[i] = *a[i/mm];
}
for(int i=; i<=maxn; i++)
a[i] += a[i-];
} int main()
{
get_prime();
init();
int T;
rd(T);
while(T--)
{
int n;
rd(n);
pd(a[n]);
} return ;
}

Sum 南京网络赛J题的更多相关文章

  1. 2019ICPC南京网络赛A题 The beautiful values of the palace(三维偏序)

    2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a squa ...

  2. HDU 4758 Walk Through Squares (2013南京网络赛1011题,AC自动机+DP)

    Walk Through Squares Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Oth ...

  3. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  5. luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节

    luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...

  6. 2017乌鲁木齐网络赛 j 题

    题目连接 : https://nanti.jisuanke.com/t/A1256 Life is a journey, and the road we travel has twists and t ...

  7. 2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2 ...

  8. 计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]

    题目链接:https://nanti.jisuanke.com/t/30999 样例输入258 样例输出814 题意: squarefree数是指不含有完全平方数( 1 除外)因子的数, 现在一个数字 ...

  9. 2013 长沙网络赛J题

    思路:这题对于其他能退出所有值的情况比较好像,唯一不能确定的是XXOXXOXXOXX这个形式的序列,其中XX表示未知,O表示已知. 我们令num[1]=0,那么num[4]=sum[3]-sum[2] ...

随机推荐

  1. HDU3853:LOOPS

    题意:迷宫是一个R*C的布局,每个格子中给出停留在原地,往右走一个,往下走一格的概率,起点在(1,1),终点在(R,C),每走一格消耗两点能量,求出最后所需要的能量期望   #include<i ...

  2. POJ2274

    这真的是一道数据结构的好题. 题意是在一条直线上有n辆车,每辆车有一个初始位置x[i]和速度v[i],问最终(在无限时间后)一共会发生多少次超车事件(mod 1000000),以及输出这些事件(如果大 ...

  3. python 回溯法 子集树模板 系列 —— 4、数字组合问题

    问题 找出从自然数1.2.3.....n中任取r个数的所有组合. 例如,n=5,r=3的所有组合为: 1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2 ...

  4. Tengine 添加第三方监控模块nginx-module-vts

    一.概述 除nginx官网源码提供的各种模板,nginx还有第三方模块.官方文档中也列出了nginx的很多第三方模块,除官网之外,还有很多的有用的模块也能在Github上找到. 官网第三方模块地址:h ...

  5. DokuWiki 使用

    新建文件夹 修改url, 将新文件夹的名称赋值给url上的id, 如要建一个"DokuWiki"的文件夹,并在文件夹下新增一个"QuickStart"的页面,改 ...

  6. JNI探秘-----FileInputStream的read方法详解

    作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 上一章我们已经分析过File ...

  7. Jq_input file标签上传图片到服务器

    引入jQuery库引入ajaxfileupload.js上传插件库(这也是jQuery的一个插件)以ASP.NET为例 <input type="file" id=" ...

  8. MOSFET的小信号模型和频率响应

    这部分内容大部分参考W.Y.Choi的课堂讲义第三讲和第四讲:http://tera.yonsei.ac.kr/class/2007_1/main.htm 一.小信号模型 首先要明确一点,大部分情形M ...

  9. 软件测试--w模型

    W模型 优点:开发把随着整个开发周期,需求.和设计同样要测试,更早的介入测试,可以发现初期的缺陷,修复成本低:分阶段工作方便项目整体管理: 缺点:开发和测试依然是线性关系,需求的变更和调整,依然不方便 ...

  10. 【转】Cocos2d-x 3.x基础学习: 总结数学类Vec2/Size/Rect

    转载:http://www.taikr.com/article/1847 在Cocos2d-x 3.x中,数学类Vec2.Size.Rect,是比较常用的类.比如设置图片位置,图片大小,两图片的碰撞检 ...