Description

When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered 1..N, the first of which contains his house and the Nth of which contains the big barn. A total M (1 <= M <= 10000) paths that connect the fields in various ways. Each path connects two different fields and has a nonzero length smaller than 35,000.

To show off his farm in the best way, he walks a tour that starts at his house, potentially travels through some fields, and ends at the barn. Later, he returns (potentially through some fields) back to his house again.

He wants his tour to be as short as possible, however he doesn't want to walk on any given path more than once. Calculate the shortest tour possible. FJ is sure that some tour exists for any given farm.

Input

* Line 1: Two space-separated integers: N and M.

* Lines 2..M+1: Three space-separated integers that define a path: The starting field, the end field, and the path's length.

Output

A single line containing the length of the shortest tour. 

Sample Input

4 5
1 2 1
2 3 1
3 4 1
1 3 2
2 4 2

Sample Output

6

Source

USACO 2003 February Gree
 
 
费用流,建图还是比较好想的。据说题中数据范围不对要当成2000个点20000条边才能过。
题目大意及题解:

 program rrr(input,output);
const
inf=;
type
etype=record
t,c,w,next,rev:longint;
end;
var
e:array[..]of etype;
a,q,dis,fre,frv:array[..]of longint;
inq:array[..]of boolean;
n,m,i,x,y,w,cnt,h,t,ans:longint;
procedure ins(x,y,c,w:longint);
begin
inc(cnt);e[cnt].t:=y;e[cnt].c:=c;e[cnt].w:=w;e[cnt].next:=a[x];a[x]:=cnt;
end;
procedure add(x,y,w:longint);
begin
ins(x,y,,w);e[cnt].rev:=cnt+;
ins(y,x,,-w);e[cnt].rev:=cnt-;
end;
procedure spfa;
begin
for i:= to n do dis[i]:=inf;
fillchar(inq,sizeof(inq),false);
h:=;t:=;dis[]:=;q[]:=;inq[]:=true;
while h<>t do
begin
inc(h);if h> then h:=;
i:=a[q[h]];
while i<> do
begin
if (e[i].c>) and (dis[q[h]]+e[i].w<dis[e[i].t]) then
begin
dis[e[i].t]:=dis[q[h]]+e[i].w;
fre[e[i].t]:=i;frv[e[i].t]:=q[h];
if not inq[e[i].t] then
begin
inc(t);if t> then t:=;
q[t]:=e[i].t;inq[e[i].t]:=true;
end;
end;
i:=e[i].next;
end;
inq[q[h]]:=false;
end;
end;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
readln(n,m);
fillchar(a,sizeof(a),);cnt:=;
for i:= to m do begin readln(x,y,w);add(x,y,w);add(y,x,w); end;
ans:=;
spfa;
i:=n;while i<> do begin e[fre[i]].c:=;e[e[fre[i]].rev].c:=;ans:=ans+e[fre[i]].w;i:=frv[i]; end;
spfa;
i:=n;while i<> do begin ans:=ans+e[fre[i]].w;i:=frv[i]; end;
write(ans);
close(input);close(output);
end.

poj2135 Farm Tour(费用流)的更多相关文章

  1. poj 2135 Farm Tour 费用流

    题目链接 给一个图, N个点, m条边, 每条边有权值, 从1走到n, 然后从n走到1, 一条路不能走两次,求最短路径. 如果(u, v)之间有边, 那么加边(u, v, 1, val), (v, u ...

  2. POJ2135 Farm Tour —— 最小费用最大流

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  3. POJ2135 Farm Tour

      Farm Tour Time Limit: 2MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Description ...

  4. POJ2135 Farm Tour(最小费用最大流)

    题目问的是从1到n再回到1边不重复走的最短路,本质是找1到n的两条路径不重复的尽量短的路. #include<cstdio> #include<cstring> #includ ...

  5. [poj2135]Farm Tour(最小费用流)

    解题关键:最小费用流 代码一:bellma-ford $O(FVE)$  bellman-ford求最短路,并在最短路上增广,速度较慢 #include<cstdio> #include& ...

  6. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  7. 网络流(最小费用最大流):POJ 2135 Farm Tour

    Farm Tour Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...

  8. Farm Tour(最小费用最大流模板)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18150   Accepted: 7023 Descri ...

  9. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

随机推荐

  1. web.xml配置遇到的问题

    web.xml<listener>            <listener-class>org.springframework.web.context.ContextLoad ...

  2. Mac下Qt的环境搭建

    1.分别下载并安装XCode和Command Line Tools(必须安装),安装完毕后,Clang就有了. https://developer.apple.com/downloads/ 2.下载Q ...

  3. 电信3G上网卡自己主动重拨

    须要使用电信3G无线上网卡做一个測试,由于要长时间使用,在使用的过程中老掉线,所以做了一个自己主动重连的批处理,好了,闲话少叙,开工: 先建立一个拨号连接: 001.png watermark/2/t ...

  4. 20155207 《网络对抗》 Exp9 Web安全基础

    20155207 <网络对抗> Exp9 Web安全基础 实验内容 关于WebGoat Cross-Site Scripting(XSS)练习 Injection Flaws练习 CSRF ...

  5. Vue 使用细节收集

    JSX 中 on 开头的属性名 在用 elementui 中的 el-upload 的时候,他们组件中有一个属性 on-change ,也不知道谁想出来的属性名,太扯淡了,非要 on 开头,我开始的代 ...

  6. python 回溯法 子集树模板 系列 —— 4、数字组合问题

    问题 找出从自然数1.2.3.....n中任取r个数的所有组合. 例如,n=5,r=3的所有组合为: 1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2 ...

  7. Keras实现风格迁移

    风格迁移 风格迁移算法经历多次定义和更新,现在应用在许多智能手机APP上. 风格迁移在保留目标图片内容的基础上,将图片风格引用在目标图片上. 风格本质上是指在各种空间尺度上图像中的纹理,颜色和视觉图案 ...

  8. 对 JavaScript 中的5种主要的数据类型进行值复制

    定义一个函数 clone(),可以对 JavaScript 中的5种主要的数据类型(包括 Number.String.Object.Array.Boolean)进行值复制 使用 typeof 判断值得 ...

  9. Package 设计3:数据源的提取和使用暂存

    SSIS 设计系列: Package设计1:选择数据类型.暂存数据和并发 Package设计2:增量更新 Package 设计3:数据源的提取和使用暂存 在使用SSIS Package处理海量数据时, ...

  10. vsftp在防火墙开启需要开放的端口

    1.开放tcp端口 firewall-cmd --zone=public --add-port=20/tcp --permanent firewall-cmd --zone=public --add- ...