一.概述                                                   

读写锁与互斥量的功能类似,对临界区的共享资源进行保护!互斥量一次只让一个线程进入临界区,读写锁比它有更高的并行性。读写锁有以下特点:

1.如果一个线程用读锁锁定了临界区,那么其他线程也可以用读锁来进入临界区,这样就可以多个线程并行操作。但这个时候,如果再进行写锁加锁就会发生阻塞,写锁请求阻塞后,后面如果继续有读锁来请求,这些后来的读锁都会被阻塞!这样避免了读锁长期占用资源,防止写锁饥饿!

2.如果一个线程用写锁锁住了临界区,那么其他线程不管是读锁还是写锁都会发生阻塞!

读写锁的优势往往展现在读操作很频繁,而写操作较少的情况下

二.函数接口                                           

1.创建读写锁

1.1:宏常量初始化

1 pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

1.2:函数初始化

1 #include <pthread.h>
2
3 int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);

rwlock:读写锁的pthread_rwlock_t结构指针

attr:读写锁的属性结构指针。不需要别的属性默认为NULL。

2.读写锁加锁与解锁

1 #include <pthread.h>
2
3 int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
4 int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
5 int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

rwlock:创建的读写锁指针

3.其他类型的加锁

1 #include <pthread.h>
2 #include <time.h>
3
4
5 int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
6 int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
7
8 int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abs_timeout);
9 int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abs_timeout);

try类函数加锁:如果获取不到锁,会立即返回错误EBUSY!

timed类函数加锁:如果规定的时间内获取不到锁,会返回ETIMEDOUT错误!

4.销毁读写锁

#include <pthread.h>
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

应用实例:

创建4个线程,2个线程读锁,2个线程写锁,观察4个线程进入临界区的顺序:

 /**
* * @file pthread_rwlock.c
* */ #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
using namespace std;
/* 初始化读写锁 */
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;
/* 全局资源 */
class CSingle{
public:
static CSingle& instance(){
static CSingle single;
return single;
}
void setX(int y){
this->x = y;
}
int getX(){
return this->x;
}
int x;
};
int global_num = ; void err_exit(const char *err_msg)
{
printf("error:%s\n", err_msg);
exit();
} /* 读锁线程函数 */
void *thread_read_lock(void *arg)
{
char *pthr_name = (char *)arg; while (global_num)
{
/* 读加锁 */
pthread_rwlock_rdlock(&rwlock); printf("线程%s进入临界区,global_num = %d, X:%d\n", pthr_name, global_num, CSingle::instance().getX());
sleep();
printf("线程%s离开临界区...\n", pthr_name); /* 读解锁 */
pthread_rwlock_unlock(&rwlock); sleep();
} return NULL;
} /* 写锁线程函数 */
void *thread_write_lock(void *arg)
{
char *pthr_name = (char *)arg; while (global_num)
{
/* 写加锁 */
pthread_rwlock_wrlock(&rwlock); /* 写操作 */
--global_num;
CSingle::instance().setX(global_num);
printf("线程%s进入临界区,global_num = %d, X:%d\n", pthr_name, global_num, CSingle::instance().getX());
sleep();
printf("线程%s离开临界区...\n", pthr_name); /* 写解锁 */
pthread_rwlock_unlock(&rwlock); sleep();
} return NULL;
} int main(void)
{
pthread_t tid_read_1, tid_read_2, tid_write_1, tid_write_2; /* 创建4个线程,2个读,2个写 */
if (pthread_create(&tid_read_1, NULL, thread_read_lock, (void *)"read_1") != )
err_exit("create tid_read_1"); if (pthread_create(&tid_read_2, NULL, thread_read_lock, (void *)("read_2")) != )
err_exit("create tid_read_2"); if (pthread_create(&tid_write_1, NULL, thread_write_lock, (void *)("write_1")) != )
err_exit("create tid_write_1"); if (pthread_create(&tid_write_2, NULL, thread_write_lock, (void *)("write_2")) != )
err_exit("create tid_write_2"); /* 随便等待一个线程,防止main结束 */
if (pthread_join(tid_read_1, NULL) != )
err_exit("pthread_join()");
if (pthread_join(tid_read_2, NULL) != )
err_exit("pthread_join()");
if (pthread_join(tid_write_1, NULL) != )
err_exit("pthread_join()");
if (pthread_join(tid_write_2, NULL) != )
err_exit("pthread_join()"); return ;
}

linux读写锁

linux读写锁的更多相关文章

  1. linux 读写锁应用实例

    转自:http://blog.csdn.net/dsg333/article/details/22113489 /*使用读写锁实现四个线程读写一段程序的实例,共创建了四个新的线程,其中两个线程用来读取 ...

  2. Linux读写锁的使用

    读写锁是用来解决读者写者问题的,读操作可以共享,写操作是排它的,读可以有多个在读,写只有唯一个在写,写的时候不允许读. 具有强读者同步和强写者同步两种形式: 强读者同步:当写者没有进行写操作时,读者就 ...

  3. Linux 读写锁

    线程的读写锁函数: 1,读写锁的初始化与销毁,静态初始化的话,可以直接使用PTHREAD_RWLOCK_INITIALIZER. #include <pthread.h> int pthr ...

  4. Linux的线程同步对象:互斥量Mutex,读写锁,条件变量

        进程是Linux资源分配的对象,Linux会为进程分配虚拟内存(4G)和文件句柄等 资源,是一个静态的概念.线程是CPU调度的对象,是一个动态的概念.一个进程之中至少包含有一个或者多个线程.这 ...

  5. linux中读写锁的rwlock介绍-nk_ysg-ChinaUnix博客

    linux中读写锁的rwlock介绍-nk_ysg-ChinaUnix博客 linux中读写锁的rwlock介绍 2013-02-26 13:59:35 分类: C/C++   http://yaro ...

  6. linux 内核的另一个自旋锁 - 读写锁

    除spinlock外,linux 内核还有一个自旋锁,名为arch_rwlock_t.它的头文件是qrwlock.h,包含在spinlock.h,头文件中对它全称为"Queue read/w ...

  7. linux线程间同步(1)读写锁

    读写锁比mutex有更高的适用性,能够多个线程同一时候占用读模式的读写锁.可是仅仅能一个线程占用写模式的读写锁. 1. 当读写锁是写加锁状态时,在这个锁被解锁之前,全部试图对这个锁加锁的线程都会被堵塞 ...

  8. Linux系统编程 —读写锁rwlock

    读写锁是另一种实现线程间同步的方式.与互斥量类似,但读写锁将操作分为读.写两种方式,可以多个线程同时占用读模式的读写锁,这样使得读写锁具有更高的并行性. 读写锁的特性为:写独占,读共享:写锁优先级高. ...

  9. linux kernel RCU 以及读写锁

    信号量有一个很明显的缺点,没有区分临界区的读写属性,读写锁允许多个线程进程并发的访问临界区,但是写访问只限于一个线程,在多处理器系统中允许多个读者访问共享资源,但是写者有排他性,读写锁的特性如下:允许 ...

随机推荐

  1. EZ 2018 03 30 NOIP2018 模拟赛(六)

    链接:http://211.140.156.254:2333/contest/67 转眼间上次加回来的Rating又掉完了. 这次不知为何特别水,T1想了一段时间没想出来弃了,导致后面心态炸了. T2 ...

  2. Grid布局20行代码快速生成瀑布流

    网格布局 Grid 布局,好用又简单,至少比 Flex 要人性化一点,美中不足就是浏览器支持度差点. DOM结构 中间夹层为了后续拓展. CSS .grid { display: grid; grid ...

  3. [C#]使用Label标签控件模拟窗体标题的移动及窗体颜色不断变换

    本文为原创文章.源代码为原创代码,如转载/复制,请在网页/代码处明显位置标明原文名称.作者及网址,谢谢! 开发工具:VS2017 语言:C# DotNet版本:.Net FrameWork 4.0及以 ...

  4. 让docker中的mysql启动时自动执行sql文件

    本文提要 本文目的不仅仅是创建一个MySQL的镜像,而是在其基础上再实现启动过程中自动导入数据及数据库用户的权限设置,并且在新创建出来的容器里自动启动MySQL服务接受外部连接,主要是通过Docker ...

  5. 一个Python开源项目-哈勃沙箱源码剖析(下)

    前言 在上一篇中,我们讲解了哈勃沙箱的技术点,详细分析了静态检测和动态检测的流程.本篇接着对动态检测的关键技术点进行分析,包括strace,sysdig,volatility.volatility的介 ...

  6. Outlook2013修改数据文件默认存放目录

    转载 当使用outlook 2013新建Email账户的时候,其数据文件(.ost文件)总是被保存在C盘默认目录“C:\Users\用户名\AppData\Local\Microsoft\Outloo ...

  7. 就qq软件的优缺点

    qq对于现在的人来说,可谓是无所不知的,这也使得它迅速融入到人们的生活中,但它也是一把双刃剑,就优缺点我进行一下举例说明: 它的优点:qq由最初设计的一种聊天工具现在已经发展成为一个很全面多用途的工具 ...

  8. OVS 精确删除流表

    OVS 精确删除流表 前言 今天看了sdnlab小姐姐的mininet教程之后,看到有一个下流表的操作,优先级没能下成功,然后回来实验一下,这个问题是解决了,不过遇到了一个小问题,ovs如何精确删除流 ...

  9. spring mvc自定义注解--访问时验证

    作用:在访问controller的方法时,判断用户是否是登陆状态. step1:定义注解 import java.lang.annotation.ElementType; import java.la ...

  10. React组件继承的由来

    没有显式继承的时候我们这么写: import * as React from "react"; export interface HelloProps { compiler: st ...