机器学习之scikit-learn库的使用
1、scikit-learn库简介
2、机器学习基础
3、用scikit-learn实现有监督学习-分类
import numpy as np
from sklearn import datasets
np.random.seed(0) #导入数据
iris=datasets.load_iris() X=iris.data
y=iris.target #打乱数据集中的元素
i=np.random.permutation(len(iris.data)) #前140条用作训练集,后10条用作测试集
X_train=X[i[:-10]]
y_train=y[i[:-10]]
X_test=X[i[-10:]]
y_test=y[i[-10:]] #使用k近邻分类器进行训练
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier()
knn.fit(X_train,y_train) #预测测试集的目标值
result=knn.predict(X_test)
print(result)
print(y_test) ''' 打印结果为:
[1 2 1 0 0 0 2 1 2 0]
[1 1 1 0 0 0 2 1 2 0]
'''
4、用scikit-learn实现有监督学习-回归
#导入线性回归模型
from sklearn import linear_model
linereg=linear_model.LinearRegression() #导入数据集并划分为训练集和测试集
from sklearn import datasets
disabets=datasets.load_diabetes()
X_train=disabets.data[:-20]
y_train=disabets.target[:-20]
X_test=disabets.data[-20:]
y_test=disabets.target[-20:] #训练模型
linereg.fit(X_train,y_train) #预测
result=linereg.predict(X_test)
print(result)
print(y_test)
''' 打印结果为:
[197.61846908 155.43979328 172.88665147 111.53537279 164.80054784
131.06954875 259.12237761 100.47935157 117.0601052 124.30503555
218.36632793 61.19831284 132.25046751 120.3332925 52.54458691
194.03798088 102.57139702 123.56604987 211.0346317 52.60335674]
[233. 91. 111. 152. 120. 67. 310. 94. 183. 66. 173. 72. 49. 64.
48. 178. 104. 132. 220. 57.]
''' #评价
score=linereg.score(X_test,y_test)
print(score)
''' 打印结果为:
0.5850753022690574
'''
5、小结
机器学习之scikit-learn库的使用的更多相关文章
- 机器学习框架Scikit Learn的学习
一 安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 机器学习三剑客之Numpy库基本操作
NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- Python第三方库(模块)"scikit learn"以及其他库的安装
scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...
- 机器学习-scikit learn学习笔记
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
随机推荐
- JVM的參數
博客:https://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html#CMSInitiatingOccupancyFraction_v ...
- F - Cookies Piles
Description The kids in my son's kindergarten made Christmas cookies with their teacher, and piled t ...
- Delphi TStringHelper用法详解
Delphi TStringHelper用法详解 (2013-08-27 22:45:42) 转载▼ 标签: delphi_xe5 it 分类: Delphi Delphi XE4的TStringHe ...
- 设置 Nuget 本地源、在线私有源、自动构建打包
设置 Nuget 本地源.在线私有源.自动构建打包 本文演示如果在项目中生成 Nuget 包,并添加 Nuget 本地源,不用发布到 Nuget 服务器.再附带使用在线私有源的简单方法,以及提交代码自 ...
- Winform 自定义窗体皮肤组件
分享一个很久之前写的一个Winform换肤组件. 主要利用CBT钩子,NativeWindow来实现.可实现动态换皮肤插件修改窗体显示外观. 我们先定义一个自定义组件 using Skin; usin ...
- 前端基础-html 字体标签,排版标签,超链接,图片标签
主要内容: 字体标签: h1~h6.<font>.<u>.<b>.<strong><em>.<sup>.<sub> ...
- <转>PHP中正则表达式函数
PHP中的正则表达式函数 在PHP中有两套正则表达式函数库.一套是由PCRE(Perl Compatible Regular Expression)库提供的,基于传统型NFA.PCRE库使用和Perl ...
- underscore.js源码研究(8)
概述 很早就想研究underscore源码了,虽然underscore.js这个库有些过时了,但是我还是想学习一下库的架构,函数式编程以及常用方法的编写这些方面的内容,又恰好没什么其它要研究的了,所以 ...
- ssm中返回中文字符串时出现乱码?
问题:返回json格式时,前端ajax请求,响应数据接收正常: 返回String时,响应数据是乱码? 解决:@RequestMapping注解中添加:produces = "text ...
- 人工智能-机器学习之Selenium(chrome驱动,火狐驱动)
selenium是一个用于web应用程序测试的工具,Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE.Mozilla Firefox.Mozilla Suite等 ...