hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)
GCD and LCM
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3409 Accepted Submission(s):
1503
how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and
lcm(x, y, z) = L?
Note, gcd(x, y, z) means the greatest common divisor of x,
y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
number of test cases.
The next T lines, each contains two positive 32-bit
signed integers, G and L.
It’s guaranteed that each answer will fit in a
32-bit signed integer.
solutions satisfying the conditions above.
6 72
7 33
0
y=p1b1*p2b2……psbs;
z=p1c1*p2c2……pscs;
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<vector>
#include<iostream>
#include<cstring>
#define inf 0x3f3f3f3f
using namespace std;
#define ll long long
const int maxx=1e6+;
int prime[maxx];
int vis[maxx];
ll g,l;
int cnt;
void init()
{
memset(vis,true,sizeof(vis));
vis[]=vis[]=false;
cnt=;
for(int i=;i<=maxx;i++)
{
if(vis[i])
prime[cnt++]=i;
for(int j=;j<cnt && prime[j]*i<=maxx;j++)
{
vis[ i*prime[j] ]=false;
if(i%prime[j]==) break;
}
}
} int main()///hdu4497
{
init();
int t;
scanf("%d",&t);
while(t--)
{
ll ans=;
scanf("%lld%lld",&g,&l);
if(l%g)
printf("0\n");
else
{
for(int i=;i<cnt;i++)
{
int e=,h=;
while(g%prime[i]==)
{
e++;
g=g/prime[i];
}
while(l%prime[i]==)
{
h++;
l=l/prime[i];
}
if(h-e)
{
ans=ans*(h-e)*;
}
}
if(g==l)///32位范围内大素数因子只能有一个,l能被g整除证明这个大素数相同,不累乘
;
else if(l>)///如果g=1,l=大素数,再乘一次6
ans=ans*;
printf("%lld\n",ans);
}
}
return ;
}
hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)的更多相关文章
- hdu2421-Deciphering Password-(欧拉筛+唯一分解定理+积性函数+立方求和公式)
Deciphering Password Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- 2018南京icpc-J-Prime Game (欧拉筛+唯一分解定理)
题意:给定n个数ai(n<=1e6,ai<=1e6),定义,并且fac(l,r)为mul(l,r)的不同质因数的个数,求 思路:可以先用欧拉筛求出1e6以内的所有质数,然后对所有ai判断, ...
- hdu3826-Squarefree number-(欧拉筛+唯一分解定理)
Squarefree number Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- noip复习——线性筛(欧拉筛)
整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...
- GCD nyoj 1007 (欧拉函数+欧几里得)
GCD nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 The greatest common divisor ...
- 欧拉筛,线性筛,洛谷P2158仪仗队
题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...
- 【BZOJ 2190】【SDOI 2008】仪仗队 欧拉筛
欧拉筛模板题 #include<cstdio> using namespace std; const int N=40003; int num=0,prime[N],phi[N]; boo ...
- [51NOD1181]质数中的质数(质数筛法)(欧拉筛)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质 ...
- 素数筛&&欧拉筛
折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体 ...
随机推荐
- RecyclerView添加条目点击事件setOnItemClickListener,不是在Adapter中设置;
RecyclerView不像ListView,可以直接写setOnItemClickListener,我们大部分都是在Adapter中的设置点击事件,这个是使用RecyclerView的addOnIt ...
- CSS浏览器兼容性与解决
一.超链接访问后hover样式不出现 1.现象描述: 同时设置了a:visited和a:hover样式,但一旦超链接点击过后,hover的样式就不再出现了. 2.解决方法: 调整样式顺序为先a:vis ...
- Build path specifies execution environment J2SE-1.5. There are no JREs installed in the workspace that are strictly compatible with this environment.
错误信息: Description Resource Path Location TypeBuild path specifies execution environment J2SE-1.5. Th ...
- python- do_excel
# @File : class_01_do_excel.py # coding=gbk #pip install openpyxl #新建.xlsx,一定要右键新建 from openpyxl imp ...
- promise请求数据用法
Promise简介 Promise 是异步编程的一种解决方案,比传统的解决方案–回调函数和事件--更合理和更强大.ES6将其写进了语言标准,统一了语法,里面保存着某个未来才回结束的事件(通常是一个异步 ...
- CouldnotcreatetheJavaVirtualMachine/1709
Section A: symptom -------------------- SWPM1024 S/4hana 1709 安装过程中遇到error, 错误提示错误信息在/tmp/sapinst_ ...
- 34.纯 CSS 创作在文本前后穿梭的边框
原文地址: https://segmentfault.com/a/1190000015045700 感想: 动画 + z-index:n ; HTML code: <div class= ...
- rem布局js实现
(function(designWidth, maxWidth) { var doc = document, win = window; var docEl = doc.documentElement ...
- 天天向上的力量 III(python在pycharm实现)
'''描述一年365天,以第1天的能力值为基数,记为1.0.当好好学习时,能力值相比前一天提高N‰:当没有学习时,能力值相比前一天下降N‰.每天努力或放任,一年下来的能力值相差多少呢?其中,N的取值范 ...
- exe加载DLL的时候会有一系列的搜索路径
假如安全DLL搜索模式启用,搜索顺序如下: 1. 应用程序所在的路径 2. Windows SYSTEM目录.通过调用GetSystemDirectory函数可以获取这个目录的路径. 3. 16位系统 ...