题目链接:传送门

题意:

有n坐城市,知道每坐城市的坐标和人口。如今要在全部城市之间修路,保证每一个城市都能相连,而且保证A/B 最大。全部路径的花费和最小,A是某条路i两端城市人口的和,B表示除路i以外全部路的花费的和(路径i的花费为0).

分析:

先求一棵最小生成树,然后枚举每一条最小生成树上的边,删掉后变成两个生成树。然后找两个集合中点权最大的两

个连接起来。这两个点中必定有权值最大的那个点。所以直接从权值最大的点開始dfs。

  为了使A/B的值最大,则A尽可能大,B尽可能小。所以B中的边一定是MST上去掉一条边后的剩余全部边。首先用O(N^2)算出

  MST,然后依次枚举。删去MST上的每一条边。MST变成两棵树T1和T2,然后在剩余的边(即不在MST上的边),以及这条删

  去的边中找到该边的两点的权值和最大以及可以连接T1和T2的边。A=删去边后的替换边的两点的权值和,B=删去该边后的MST

  的值。求A/B最大。

则A尽可能大,A各自是T1和T2中最大的两个点,则全部点中权值最大的点一定在A中。由此在MST上从权值

  最大的点作为root。開始dfs。递归求出子树中的每一个最大的点以及求出A/B的比值,求出最大。

分析转载自:传送门

我的理解。首先非常明显我们是须要求出最小生成树的,然后我们能够枚举边(u,v)中的边,非常明显枚举的边都会

与原来MST中的边形成一个环,由于这个边不在MST中,那么这个边的权值一定是大于MST中连接U,V的边的,因此

我们在这个环里去掉的应该是权值最大的边。

代码例如以下:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const int maxn = 1e3+10; const int inf = 1e9+10; struct point{
int x,y;
}a[maxn]; int head[maxn],par[maxn],peo[maxn]; bool vis[maxn]; int ip,mmax;
double ans ,mst; struct tree{
int u,v;
double w;
tree(){}
tree(int _u,int _v,double _w):u(_u),v(_v),w(_w){}
bool operator < (const struct tree &tmp)const{
return w<tmp.w;
}
}mp[maxn*maxn]; struct nod{
int to,next;
double w;
}edge[maxn*2]; double calu(point a,point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void add(int u,int v,double w){
edge[ip].to=v;
edge[ip].w=w;
edge[ip].next=head[u];
head[u]=ip++;
} int find_par(int x){
if(x!=par[x]) return par[x]=find_par(par[x]);
return par[x];
} bool Union(int x,int y){
x=find_par(x);
y=find_par(y);
if(x!=y){
par[x]=y;
return true;
}
return false;
} void init(){
for(int i=0;i<maxn;i++) par[i]=i;
ip=mmax=0;
ans=mst=0;
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
} int dfs(int root){
vis[root]=1;
int peo_max=peo[root];
for(int i=head[root];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(!vis[v]){
int tmp = dfs(v);
peo_max=max(peo_max,tmp);
ans=max(ans,(tmp+mmax)/(mst-edge[i].w));
}
}
return peo_max;
} int main(){
int t,n,root;
scanf("%d",&t);
while(t--){
init();
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&a[i].x,&a[i].y,&peo[i]);
if(peo[i]>mmax){
mmax=peo[i];
root=i;
}
}
int cnt = 0;
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
mp[cnt++]=tree(i,j,calu(a[i],a[j]));
}
}
sort(mp,mp+cnt);
for(int i=0;i<cnt;i++){
if(Union(mp[i].u,mp[i].v)){
mst+=mp[i].w;
add(mp[i].u,mp[i].v,mp[i].w);
add(mp[i].v,mp[i].u,mp[i].w);
}
}
dfs(root);
printf("%.2lf\n",ans);
}
return 0;
}

HDU 4081 Qin Shi Huang&#39;s National Road System(最小生成树/次小生成树)的更多相关文章

  1. HDU 4081 Qin Shi Huang&#39;s National Road System 最小生成树

    点击打开链接题目链接 Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...

  2. HDU4081 Qin Shi Huang&#39;s National Road System【prim最小生成树+枚举】

    先求出最小生成树,然后枚举树上的边,对于每条边"分别"找出这条割边形成的两个块中点权最大的两个 1.因为结果是A/B.A的变化会引起B的变化,两个制约.无法直接贪心出最大的A/B. ...

  3. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  4. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  5. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  7. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  8. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  9. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

随机推荐

  1. js input输入框的总结

    一.输入框只能输入数字 原文:https://www.cnblogs.com/sese/p/5872144.html 分享下js限制输入框中只能输入数字的方法,包括整数与小数,分享几个例子,有需要的朋 ...

  2. C/C++杂记:深入理解数据成员指针、函数成员指针

    1. 数据成员指针 对于普通指针变量来说,其值是它所指向的地址,0表示空指针. 而对于数据成员指针变量来说,其值是数据成员所在地址相对于对象起始地址的偏移值,空指针用-1表示.例: 代码示例: str ...

  3. Android 6.0 API

    Android 6.0 (M) 为用户和应用开发者提供了新功能.本文旨在介绍其中最值得关注的 API. 着手开发 要着手开发 Android 6.0 应用,您必须先获得 Android SDK,然后使 ...

  4. 一步一步学习IdentityServer3 (1)

    学习之初: IdentityServer3我自己最开始了解到的就是做一个SSO单点登录,后面发现还有单独的认证服务功能,其实它还可以做APIs的访问控制,资源授权,另外还可以为提供第三方登录,其他的自 ...

  5. 【AtCoder】AtCoder Petrozavodsk Contest 001

    A - Two Integers 如果\(X\)是\(Y\)的倍数的话不存在 可以输出\(X \cdot (\frac{Y}{gcd(X,Y)} - 1)\) 代码 #include <bits ...

  6. Codeforces Round #475 (Div. 2) C - Alternating Sum

    等比数列求和一定要分类讨论!!!!!!!!!!!! #include<bits/stdc++.h> #define LL long long #define fi first #defin ...

  7. 使用SOCKET获取网页的内容

    使用fsockopen()函数来实现获取页面信息,完整代码如下 //设置字符集(由于要抓取的网易网站字符集编码是gbk编码) header("content-type:text/html;c ...

  8. 006.Zabbix添加监控主机

    一 配置步骤和流程 Zabbix完整的监控配置流程可以简单的描述为: Host groups(主机组)---->Hosts(主机)---->Applications(监控项组)----&g ...

  9. Harbor 企业级镜像仓库搭建

    Habor是由VMWare公司开源的容器镜像仓库.事实上,Habor是在Docker Registry上进行了相应的 企业级扩展,从而获得了更加广泛的应用,这些新的企业级特性包括:管理用户界面,基于角 ...

  10. 使用ApiPost测试接口时需要先登录怎么办?利用Cookie模拟登陆!

    ApiPost简介: ApiPost是一个支持团队协作,并可直接生成文档的API调试.管理工具.它支持模拟POST.GET.PUT等常见请求,是后台接口开发者或前端.接口测试人员不可多得的工具 . 下 ...