题目链接:传送门

题意:

有n坐城市,知道每坐城市的坐标和人口。如今要在全部城市之间修路,保证每一个城市都能相连,而且保证A/B 最大。全部路径的花费和最小,A是某条路i两端城市人口的和,B表示除路i以外全部路的花费的和(路径i的花费为0).

分析:

先求一棵最小生成树,然后枚举每一条最小生成树上的边,删掉后变成两个生成树。然后找两个集合中点权最大的两

个连接起来。这两个点中必定有权值最大的那个点。所以直接从权值最大的点開始dfs。

  为了使A/B的值最大,则A尽可能大,B尽可能小。所以B中的边一定是MST上去掉一条边后的剩余全部边。首先用O(N^2)算出

  MST,然后依次枚举。删去MST上的每一条边。MST变成两棵树T1和T2,然后在剩余的边(即不在MST上的边),以及这条删

  去的边中找到该边的两点的权值和最大以及可以连接T1和T2的边。A=删去边后的替换边的两点的权值和,B=删去该边后的MST

  的值。求A/B最大。

则A尽可能大,A各自是T1和T2中最大的两个点,则全部点中权值最大的点一定在A中。由此在MST上从权值

  最大的点作为root。開始dfs。递归求出子树中的每一个最大的点以及求出A/B的比值,求出最大。

分析转载自:传送门

我的理解。首先非常明显我们是须要求出最小生成树的,然后我们能够枚举边(u,v)中的边,非常明显枚举的边都会

与原来MST中的边形成一个环,由于这个边不在MST中,那么这个边的权值一定是大于MST中连接U,V的边的,因此

我们在这个环里去掉的应该是权值最大的边。

代码例如以下:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std; const int maxn = 1e3+10; const int inf = 1e9+10; struct point{
int x,y;
}a[maxn]; int head[maxn],par[maxn],peo[maxn]; bool vis[maxn]; int ip,mmax;
double ans ,mst; struct tree{
int u,v;
double w;
tree(){}
tree(int _u,int _v,double _w):u(_u),v(_v),w(_w){}
bool operator < (const struct tree &tmp)const{
return w<tmp.w;
}
}mp[maxn*maxn]; struct nod{
int to,next;
double w;
}edge[maxn*2]; double calu(point a,point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void add(int u,int v,double w){
edge[ip].to=v;
edge[ip].w=w;
edge[ip].next=head[u];
head[u]=ip++;
} int find_par(int x){
if(x!=par[x]) return par[x]=find_par(par[x]);
return par[x];
} bool Union(int x,int y){
x=find_par(x);
y=find_par(y);
if(x!=y){
par[x]=y;
return true;
}
return false;
} void init(){
for(int i=0;i<maxn;i++) par[i]=i;
ip=mmax=0;
ans=mst=0;
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
} int dfs(int root){
vis[root]=1;
int peo_max=peo[root];
for(int i=head[root];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(!vis[v]){
int tmp = dfs(v);
peo_max=max(peo_max,tmp);
ans=max(ans,(tmp+mmax)/(mst-edge[i].w));
}
}
return peo_max;
} int main(){
int t,n,root;
scanf("%d",&t);
while(t--){
init();
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&a[i].x,&a[i].y,&peo[i]);
if(peo[i]>mmax){
mmax=peo[i];
root=i;
}
}
int cnt = 0;
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
mp[cnt++]=tree(i,j,calu(a[i],a[j]));
}
}
sort(mp,mp+cnt);
for(int i=0;i<cnt;i++){
if(Union(mp[i].u,mp[i].v)){
mst+=mp[i].w;
add(mp[i].u,mp[i].v,mp[i].w);
add(mp[i].v,mp[i].u,mp[i].w);
}
}
dfs(root);
printf("%.2lf\n",ans);
}
return 0;
}

HDU 4081 Qin Shi Huang&#39;s National Road System(最小生成树/次小生成树)的更多相关文章

  1. HDU 4081 Qin Shi Huang&#39;s National Road System 最小生成树

    点击打开链接题目链接 Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...

  2. HDU4081 Qin Shi Huang&#39;s National Road System【prim最小生成树+枚举】

    先求出最小生成树,然后枚举树上的边,对于每条边"分别"找出这条割边形成的两个块中点权最大的两个 1.因为结果是A/B.A的变化会引起B的变化,两个制约.无法直接贪心出最大的A/B. ...

  3. HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...

  4. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  5. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  6. hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)

    题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...

  7. hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1

    During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...

  8. HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  9. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

随机推荐

  1. PHP URL中包含中文,查看时提示404

    使用Microsoft Web Platform在IIS里配置安装一个wordpress,一切顺利. 当添加一片文章时,自动生成URL类似如下: http://localhost/wordpress/ ...

  2. 前端JavaScript高级面试笔记

    一.ES6 1.模块化 ES6通过export和import实现模块化 ES6的模块化的基本规则或特点, 欢迎补充: 1:每一个模块只加载一次, 每一个JS只执行一次, 如果下次再去加载同目录下同文件 ...

  3. 标签流 VS 脚本流

    搞过点前端,玩过几个框架之后,基本都会发现框架在设计上的一些套路和流派,今天给大家扒一扒其中的两个书写流派“标签流”和“脚本流” 我们以一个button按钮为例: 这样裸写HTML标签的方式基本没法儿 ...

  4. 使用nginx统一代理dashboard,grafana,Prometheus二级目录访问

    k8s上的这些管理工具必不可少,可以统一在nginx下的二级目录下. ingress是好,但我们不方便使用内部域名,相信么...:) 一,prometheus改造 在prometheus的deploy ...

  5. EntityFramework系列:SQLite的CodeFrist和RowVersion

    没什么好说的,能支持DropCreateDatabaseIfModelChanges和RowVersion的Sqlite谁都想要.EntityFramework7正在添加对Sqlite的支持,虽然EF ...

  6. Flume分布式日志收集系统

    1.flume是分布式的日志收集系统,把收集来的数据传送到目的地去.2.flume里面有个核心概念,叫做agent.agent是一个java进程,运行在日志收集节点.通过agent接收日志,然后暂存起 ...

  7. php 导出excel文件

    out_excel.php <?phperror_reporting(E_ALL);date_default_timezone_set('Asia/Shanghai');require_once ...

  8. 002.DNS-BIND简介

    一 Linux-BIND服务器简介 Bind是Berkeley Internet Name Domain Service的简写,它是一款实现DNS服务器的开放源码软件.已经成为世界上使用最为广泛的DN ...

  9. Javascript版经典游戏之《扫雷》

    翻出年初写的游戏贴上来,扫雷相信大家都玩过,先上图: 源码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN ...

  10. linux学习笔记-1.man_page

    1.内部命令:echo 查看内部命令帮助:help echo 或者 man echo 2.外部命令:ls 查看外部命令帮助:ls --help 或者 man ls 或者 info ls 3.man文档 ...