使用JAVA API 解析ORC File

orc File 的解析过程中,使用FileInputFormat的getSplits(conf, 1)函数,

然后使用 RecordReaderreader = in.getRecordReader(splits[0], conf, Reporter.NULL);

解析ORCfile, 发现当ORC 文件的比较大的时候,超过256M时,不能读取所有的数据。

比如一个ORC 文件有300M,共有180万的条数据,使用上面的方法只能读取出110万的数据,剩下70万的数据读取不出。

使用的读取示例源码如下:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.io.orc.*;
import org.apache.hadoop.hive.ql.io.orc.RecordReader;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.mapred.*;
import org.apache.orc.TypeDescription; import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties; public void readOrcFile(String fileName) throws SerDeException, IOException {
JobConf conf = new JobConf(hadoopConf);
Path orcFilePath = new Path(fileName);
StringBuilder allColumns = new StringBuilder();
StringBuilder allColumnTypes = new StringBuilder();
Properties p = new Properties();
p.setProperty("columns", "url,word,freq,weight");
p.setProperty("columns.types", "string:string:string:string");
OrcSerde serde = new OrcSerde();
serde.initialize(conf, p);
StructObjectInspector inspector = (StructObjectInspector) serde.getObjectInspector();
OrcInputFormat in = new OrcInputFormat();
FileInputFormat.setInputPaths(conf, orcFilePath);
InputSplit[] splits = in.getSplits(conf, 1);
System.out.println("splits.length==" + splits.length);
RecordReader reader = in.getRecordReader(splits[0], conf, Reporter.NULL); Long count = 0 L;
while (reader.next(key, value)) {
count ++;
}
reader.close();
}

org.apache.hadoop.mapred.InputFormat接口的getSplits方法定义如下:

InputSplit[] getSplits(JobConf job,
int numSplits)
throws IOException

其中numSplits参数的含义时期望得到分片数, 如上的例子中,期望输入文件的分片为1个,如果ORC文件有多个分片则会被合并成一个分片。但是hdfs的中设置的一个分片最大为256M,所以合并成1个分片就会少300-256=44M的数据,造成了上面的问题。

如果 numSplits 参数的值设置为小于0的负数,则会按照ORC File的正常的 stripe个数生成split。

InputSplit[] splits = in.getSplits(conf, -1) 得到的 splits 个数是6个,6个splits中记录数是预期

中的180条。

(二)使用 org.apache.hadoop.hive.ql.io.orc.Reader 类读取ORC文件

可以通过reader.getSchema(); // 获取ORC文件的schema文件。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.io.orc.*;
import org.apache.hadoop.hive.ql.io.orc.RecordReader;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.mapred.*;
import org.apache.orc.TypeDescription; import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties; public void readOrc(String INPUT) throws IOException {
Configuration conf = new Configuration();
Path file_in = new Path(INPUT);
Reader reader = OrcFile.createReader(FileSystem.getLocal(conf), file_in); TypeDescription schema = reader.getSchema(); // 获取ORC文件的schema文件
System.out.println(schema.toJson());
System.out.println(schema.toString());
System.out.println("--------------------------------"); StructObjectInspector inspector = (StructObjectInspector) reader.getObjectInspector();
RecordReader records = reader.rows();
Object row = null;
Long count = 0L;
while (records.hasNext()) {
row = records.next(row);
// System.out.println(row.toString());
count++;
List value_lst = inspector.getStructFieldsDataAsList(row);
}
System.out.println("--------total line=" + count);
}

使用JAVA API 解析ORC File的更多相关文章

  1. java微信开发API解析(二)-获取消息和回复消息

    java微信开发API解析(二)-获取消息和回复消息 说明 * 本演示样例依据微信开发文档:http://mp.weixin.qq.com/wiki/home/index.html最新版(4/3/20 ...

  2. json-lib-2.4-jdk15.jar所需全部JAR包.rar java jsoup解析开彩网api接口json数据实例

    json-lib-2.4-jdk15.jar所需全部JAR包.rar  java jsoup解析开彩网api接口json数据实例 json-lib-2.4-jdk15.jar所需全部JAR包.rar  ...

  3. Hive存储格式之ORC File详解,什么是ORC File

    目录 概述 文件存储结构 Stripe Index Data Row Data Stripe Footer 两个补充名词 Row Group Stream File Footer 条纹信息 列统计 元 ...

  4. Java XML解析工具 dom4j介绍及使用实例

    Java XML解析工具 dom4j介绍及使用实例 dom4j介绍 dom4j的项目地址:http://sourceforge.net/projects/dom4j/?source=directory ...

  5. Java API 快速速查宝典

    Java API 快速速查宝典 作者:明日科技,陈丹丹,李银龙,王国辉 著 出版社:人民邮电出版社 出版时间:2012年5月 Java编程的最基本要素是方法.属性和事件,掌握这些要素,就掌握了解决实际 ...

  6. Java XML解析器

    使用Apache Xerces解析XML文档 一.技术概述 在用Java解析XML时候,一般都使用现成XML解析器来完成,自己编码解析是一件很棘手的问题,对程序员要求很高,一般也没有专业厂商或者开源组 ...

  7. Java数据解析之XML

    文章大纲 一.XML解析介绍二.Java中XML解析介绍三.XML解析实战四.项目源码下载   一.XML解析介绍   最基础的XML解析方式有DOM和SAX,DOM和SAX是与平台无关的官方解析方式 ...

  8. 源生API解析XML文档与dom4j解析XML文档

    一.XML语言 XML是一种可扩展的标记语言,是一种强类型的语言,类似HTML(超文本标记语言,是一种弱类型的语言).XML是一种通用的数据交换格式(关系型数据库),综上所诉:XML可以传输数据,也可 ...

  9. Hadoop 系列(三)Java API

    Hadoop 系列(三)Java API <dependency> <groupId>org.apache.hadoop</groupId> <artifac ...

随机推荐

  1. Maven构建JavaWeb

    查看java和mvn版本 java -version mvn -v D:\software\yiibai\spring-1.4.3.RELEASE>java -versionjava versi ...

  2. Vue router 全局路由守卫

    记录一下全局路由守卫的使用: 方法一:定义一个数组用于检测与管理需要登录的页面,全局路由守卫配合本地存储判断是否跳转 import Vue from 'vue' import Router from ...

  3. idea15 生成mybatis代码

    pom.xml <build> <finalName>mybatis_generator</finalName> <plugins> <plugi ...

  4. Eigen中的map

    Map类用于通过C++中普通的连续指针或者数组 (raw C/C++ arrays)来构造Eigen里的Matrix类,这就好比Eigen里的Matrix类的数据和raw C++array 共享了一片 ...

  5. ViewPager源码分析——滑动切换页面处理过程

    上周客户反馈Contacts快速滑动界面切换tab有明显卡顿,让优化. 自己验证又没发现卡顿现象,但总得给客户一个技术性的回复,于是看了一下ViewPager源码中处理滑动切换tab的过程. View ...

  6. hbase shell 命令

    HBase使用教程 时间 2014-06-01 20:02:18 IT社区推荐资讯 原文  http://itindex.net/detail/49825-hbase 主题 HBase 1     基 ...

  7. 斐波那契数列(NOIP1997)

    题目链接:斐波那契数列 这题是数论的一个基本应用,还是很水,因为数据范围太水了,只有48,这也太小了.不过也有可能是当时的电脑速度跑得比较慢的原因.但是这个算法应该还是这个算法.主要思路就是递推求斐波 ...

  8. python学习 day22 (3月29日)----(生成器推导式)

    新手上路请多担待 1 2 封装 3 私有化封装 #__author : 'liuyang' #date : 2019/3/29 0029 上午 9:35 # 不想让别人看 修改 我的属性 # 源码来说 ...

  9. Codeforces 1093 简要题解

    文章目录 A题 B题 C题 D题 E题 F题 G题 传送门 GGG题手速慢了没有在比赛的时候码出来233,FFF题居然没想出来? 五道题滚粗. 先谈谈其他几道题. A题 传送门 不小心看错题 直接看奇 ...

  10. Laravel创建自定义 Artisan 控制台命令实例教程

    来源:http://laravelacademy.org/post/1374.html 1.入门 Laravel通过Artisan提供了强大的控制台命令来处理非浏览器业务逻辑.要查看Laravel中所 ...