使用JAVA API 解析ORC File

orc File 的解析过程中,使用FileInputFormat的getSplits(conf, 1)函数,

然后使用 RecordReaderreader = in.getRecordReader(splits[0], conf, Reporter.NULL);

解析ORCfile, 发现当ORC 文件的比较大的时候,超过256M时,不能读取所有的数据。

比如一个ORC 文件有300M,共有180万的条数据,使用上面的方法只能读取出110万的数据,剩下70万的数据读取不出。

使用的读取示例源码如下:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.io.orc.*;
import org.apache.hadoop.hive.ql.io.orc.RecordReader;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.mapred.*;
import org.apache.orc.TypeDescription; import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties; public void readOrcFile(String fileName) throws SerDeException, IOException {
JobConf conf = new JobConf(hadoopConf);
Path orcFilePath = new Path(fileName);
StringBuilder allColumns = new StringBuilder();
StringBuilder allColumnTypes = new StringBuilder();
Properties p = new Properties();
p.setProperty("columns", "url,word,freq,weight");
p.setProperty("columns.types", "string:string:string:string");
OrcSerde serde = new OrcSerde();
serde.initialize(conf, p);
StructObjectInspector inspector = (StructObjectInspector) serde.getObjectInspector();
OrcInputFormat in = new OrcInputFormat();
FileInputFormat.setInputPaths(conf, orcFilePath);
InputSplit[] splits = in.getSplits(conf, 1);
System.out.println("splits.length==" + splits.length);
RecordReader reader = in.getRecordReader(splits[0], conf, Reporter.NULL); Long count = 0 L;
while (reader.next(key, value)) {
count ++;
}
reader.close();
}

org.apache.hadoop.mapred.InputFormat接口的getSplits方法定义如下:

InputSplit[] getSplits(JobConf job,
int numSplits)
throws IOException

其中numSplits参数的含义时期望得到分片数, 如上的例子中,期望输入文件的分片为1个,如果ORC文件有多个分片则会被合并成一个分片。但是hdfs的中设置的一个分片最大为256M,所以合并成1个分片就会少300-256=44M的数据,造成了上面的问题。

如果 numSplits 参数的值设置为小于0的负数,则会按照ORC File的正常的 stripe个数生成split。

InputSplit[] splits = in.getSplits(conf, -1) 得到的 splits 个数是6个,6个splits中记录数是预期

中的180条。

(二)使用 org.apache.hadoop.hive.ql.io.orc.Reader 类读取ORC文件

可以通过reader.getSchema(); // 获取ORC文件的schema文件。

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hive.ql.io.orc.*;
import org.apache.hadoop.hive.ql.io.orc.RecordReader;
import org.apache.hadoop.hive.serde2.SerDeException;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.mapred.*;
import org.apache.orc.TypeDescription; import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties; public void readOrc(String INPUT) throws IOException {
Configuration conf = new Configuration();
Path file_in = new Path(INPUT);
Reader reader = OrcFile.createReader(FileSystem.getLocal(conf), file_in); TypeDescription schema = reader.getSchema(); // 获取ORC文件的schema文件
System.out.println(schema.toJson());
System.out.println(schema.toString());
System.out.println("--------------------------------"); StructObjectInspector inspector = (StructObjectInspector) reader.getObjectInspector();
RecordReader records = reader.rows();
Object row = null;
Long count = 0L;
while (records.hasNext()) {
row = records.next(row);
// System.out.println(row.toString());
count++;
List value_lst = inspector.getStructFieldsDataAsList(row);
}
System.out.println("--------total line=" + count);
}

使用JAVA API 解析ORC File的更多相关文章

  1. java微信开发API解析(二)-获取消息和回复消息

    java微信开发API解析(二)-获取消息和回复消息 说明 * 本演示样例依据微信开发文档:http://mp.weixin.qq.com/wiki/home/index.html最新版(4/3/20 ...

  2. json-lib-2.4-jdk15.jar所需全部JAR包.rar java jsoup解析开彩网api接口json数据实例

    json-lib-2.4-jdk15.jar所需全部JAR包.rar  java jsoup解析开彩网api接口json数据实例 json-lib-2.4-jdk15.jar所需全部JAR包.rar  ...

  3. Hive存储格式之ORC File详解,什么是ORC File

    目录 概述 文件存储结构 Stripe Index Data Row Data Stripe Footer 两个补充名词 Row Group Stream File Footer 条纹信息 列统计 元 ...

  4. Java XML解析工具 dom4j介绍及使用实例

    Java XML解析工具 dom4j介绍及使用实例 dom4j介绍 dom4j的项目地址:http://sourceforge.net/projects/dom4j/?source=directory ...

  5. Java API 快速速查宝典

    Java API 快速速查宝典 作者:明日科技,陈丹丹,李银龙,王国辉 著 出版社:人民邮电出版社 出版时间:2012年5月 Java编程的最基本要素是方法.属性和事件,掌握这些要素,就掌握了解决实际 ...

  6. Java XML解析器

    使用Apache Xerces解析XML文档 一.技术概述 在用Java解析XML时候,一般都使用现成XML解析器来完成,自己编码解析是一件很棘手的问题,对程序员要求很高,一般也没有专业厂商或者开源组 ...

  7. Java数据解析之XML

    文章大纲 一.XML解析介绍二.Java中XML解析介绍三.XML解析实战四.项目源码下载   一.XML解析介绍   最基础的XML解析方式有DOM和SAX,DOM和SAX是与平台无关的官方解析方式 ...

  8. 源生API解析XML文档与dom4j解析XML文档

    一.XML语言 XML是一种可扩展的标记语言,是一种强类型的语言,类似HTML(超文本标记语言,是一种弱类型的语言).XML是一种通用的数据交换格式(关系型数据库),综上所诉:XML可以传输数据,也可 ...

  9. Hadoop 系列(三)Java API

    Hadoop 系列(三)Java API <dependency> <groupId>org.apache.hadoop</groupId> <artifac ...

随机推荐

  1. SQL截取字符串分隔符中间部门的办法

    需求:实际项目中需要截取第2到第3个逗号中间部分的内容 方案: declare @str nvarchar(50);set @str='11,222,3333,44444';select @str a ...

  2. 【UI测试】--规范性

  3. 利用PHP脚本辅助MySQL数据库管理2-表主键表索引

    <?php $dbi = new DbMysql; $dbi->dbh = 'mysql://root:mysql@127.0.0.1/coffeetest'; $map = array( ...

  4. Linux学习笔记:Jenkins的使用

    在windows中使用Jenkins(Linux系统下类似),步骤是: 1 从官网下载jenkins项目的war包 2 将jenkins.war放到tomcat的webapps目录中,启动tomcat ...

  5. TCP与UDP传输协议

    目录结构: contents structure [-] 1 TCP协议和UDP协议的比较 1.1 TCP协议 TCP的全称是Transmission Control Protocol (传输控制协议 ...

  6. 在RedHat 和 Ubuntu 中配置 Delphi 的Linux开发环境(转)

    原文地址:http://chapmanworld.com/2016/12/29/configure-delphi-and-redhat-or-ubuntu-for-linux-development/ ...

  7. Educational Codeforces Round 51 D. Bicolorings(dp)

    https://codeforces.com/contest/1051/problem/D 题意 一个2*n的矩阵,你可以用黑白格子去填充他,求联通块数目等于k的方案数,答案%998244353. 思 ...

  8. 【转载】Impala和Hive的区别

    Impala和Hive的关系  Impala是基于Hive的大数据实时分析查询引擎,直接使用Hive的元数据库Metadata,意味着impala元数据都存储在Hive的metastore中.并且im ...

  9. python模块:re

    # # Secret Labs' Regular Expression Engine # # re-compatible interface for the sre matching engine # ...

  10. REST WebService与SOAP WebService的比较

    在SOA的基础技术实现方式中WebService占据了很重要的地位,通常我们提到WebService第一想法就是SOAP消息在各种传输协议上交互.近几年REST的思想伴随着SOA逐渐被大家接受,同时各 ...