poj1679
题意:给定一个无向连通图,问该图的最小生成树是否唯一。
分析:有一个定理,如果该图存在次小生成树(与原最小生成树不同,但长度小于等于原最小生成树),则一定可以通过从原最小生成树中去掉一个边并再入一个边得到。
经过思考我们会发现,如果要加入一个v1和v2之间的新边,那么则应去掉原有的两点间通路(是唯一通路)中的一条边才能构成生成树。那么为了保证生成树最小,则应去掉原通路上最长的那条边。
对于本题我们的做法是先求最小生成树,然后枚举每一条没有在最小生成树中的边,看加入树中并去掉通路上的最长边后是否与原最小生成数长度相同。
那么如何才能知道要去掉的最长边有多长呢?我们可以在求最小生成树的时候使用Prim算法,我们用一个二维数组f[i][j]记录两点间走树枝路径的最长边。每将一个点加入到最小生成树中的时候,就更新所有已经在最小生成树中的点到该点的路径上的最长边长度。这样建树之后我们便知道了任意两点间的最长边长度。
//poj1679
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
#define INFINITE 900000000 const int maxn = ; struct XEdge
{
int s;
int v; //边端点
int w; //边权值
XEdge(int s_ = , int v_ = , int w_ = INFINITE):s(s_), v(v_),w(w_) { }
}; vector<vector<XEdge> > G(maxn); //图的邻接表 int n, m, maxval[maxn][maxn],map[maxn][maxn];
bool used[maxn][maxn]; void init()
{
int i, a, b, d; memset(used, , sizeof(used));
memset(maxval, , sizeof(maxval));
memset(map, , sizeof(map));
scanf("%d%d", &n, &m);
for (i = ; i < n; i++)
G[i].clear();
for (i = ; i < m; i++)
{
scanf("%d%d%d", &a, &b, &d);
a--;
b--;
G[a].push_back(XEdge(a, b, d));
G[b].push_back(XEdge(b, a, d));
map[a][b] = map[b][a] = d;
}
} bool operator <(const XEdge & e1, const XEdge & e2)
{
return e1.w > e2.w;
} void dp(vector<int> &vUsed, int u, int w)
{
int v, i; for (i = ; i < n; i++)
{
v = i;
maxval[v][u] = _cpp_max(w, maxval[v][u]);
maxval[u][v] = maxval[v][u];
}
} int HeapPrim(const vector<vector<XEdge> > & G)
//G是邻接表,n是顶点数目,返回值是最小生成树权值和
{
int i;
XEdge xDist(,);
priority_queue<XEdge> pq;
vector<int> vDist(n); //各顶点到已经建好的那部分树的距离
vector<int> vUsed(n);//标记顶点是否已经被加入最小生成树
int nDoneNum = ; //已经被加入最小生成树的顶点数目
for( i = ;i < n;i ++ ) {
vUsed[i] = ;
vDist[i] = INFINITE;
}
nDoneNum = ;
int nTotalW = ;
pq.push(XEdge(,,));
while( nDoneNum < n && !pq.empty() ) {
do {
xDist = pq.top(); pq.pop();
} while( vUsed[xDist.v] == && ! pq.empty());
if( vUsed[xDist.v] == ) {
nTotalW += xDist.w;
vUsed[xDist.v] = ;
used[xDist.s][xDist.v] = true;
used[xDist.v][xDist.s] = true;
dp(vUsed, xDist.v, xDist.w);
nDoneNum ++;
for( i = ;i < G[xDist.v].size();i ++ ) {
int k = G[xDist.v][i].v;
if( vUsed[k] == ) {
int w = G[xDist.v][i].w ;
if( vDist[k] > w ) {
vDist[k] = w;
pq.push(XEdge(xDist.v,k,w));
}
}
}
}
}
if( nDoneNum < n )
return -; //图不连通
return nTotalW;
} bool unique()
{
int i, j; for (i = ; i < n; i++)
for (j = i; j < n; j++)
if (map[i][j] && !used[i][j] && maxval[i][j] == map[i][j])
return false;
return true;
} int main()
{
int t, ans;
bool ok; //freopen("t.txt", "r", stdin);
scanf("%d", &t);
while (t--)
{
init();
ans = HeapPrim(G);
ok = unique();
if (ok)
printf("%d\n", ans);
else
printf("Not Unique!\n");
}
return ;
}
poj1679的更多相关文章
- POJ1679 The Unique MST[次小生成树]
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28673 Accepted: 10239 ...
- POJ-1679 The Unique MST---判断最小生成树是否唯一
题目链接: https://vjudge.net/problem/POJ-1679 题目大意: 给定一个无向连通网,判断最小生成树是否唯一. 思路: (1)对图中的每条边,扫描其他边,如果存在相同权值 ...
- 次小生成树(POJ1679/CDOJ1959)
POJ1679 首先求出最小生成树,记录权值之和为MinST.然后枚举添加边(u,v),加上后必形成一个环,找到环上非(u,v)边的权值最大的边,把它删除,计算当前生成树的权值之和,取所有枚举加边后生 ...
- POJ1679(次小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 36692 Accepted: 13368 ...
- [poj1679]The Unique MST(最小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28207 Accepted: 10073 ...
- ACM/ICPC 之 判别MST唯一性-Kruskal解法(POJ1679)
判别MST是否唯一的例题. POJ1679-The Unique MST 题意:给定图,求MST(最小生成树)是否唯一,唯一输出路径长,否则输出Not Unique! 题解:MST是否唯一取决于是否有 ...
- poj1679 次小生成树
prim方法:先求过一遍prim,同时标记使用过得边.然后同时记录任意2点间的最大值. 每次加入一条新的边,会产生环,删去环中的最大值即可. #include<stdio.h> #incl ...
- poj1679 kruskal
判断最小生成树是否唯一.kruskal时记录需要的边,然后枚举删除它们,每次删除时进行kruskal,如果值未变,表明不唯一. #include<stdio.h> #include< ...
- POJ1679 The Unique MST(次小生成树)
可以依次枚举MST上的各条边并删去再求最小生成树,如果结果和第一次求的一样,那就是最小生成树不唯一. 用prim算法,时间复杂度O(n^3). #include<cstdio> #incl ...
随机推荐
- image 样式设置
.image-fluid:响应式大小 .image-thumbnails:照片四周会出现一个1px宽的边框 .figure:用于<figure>标签,用来标记一个图像 .figure-ca ...
- idea 导入项目后不能执行main方法
点击右键,出来不能run/debug 项目分为多个mouel模块,很多模块进来后在idea中丢失了(暂时不知道原因) 我们需要做的就是把丢失的模块加进来 ctrl+alt+shift+s 快捷键 或 ...
- 【题解】 [ZJOI2009]假期的宿舍 (二分图匹配)
懒得复制题面,戳我 Solution: 处理出床位.要留校的人(注意来访问的人一定住校),和人与人的关系(连边) 再接着就是二分图. 注意的就是连向的人必须是有床位的 还要注意的就是只用判断住校的同学 ...
- 【Revit API】脱离中心文件
话不多说,直接代码,整个过程不需要发起Transaction OpenOptions op = new OpenOptions(); op.Audit = true; //是否需要核查 op.Deta ...
- C# 分析 IIS 日志(Log)
由于最近又要对 IIS日志 (Log) 分析,以便得出各个搜索引擎每日抓取的频率,所以这两天一直在尝试各个办法来分析 IIS 日志 (Log),其中尝试过:导入数据库.Log parser.Powse ...
- (转) Eclipse通过HibernateTools实现逆向生成Hibernate实体类
背景:工作中使用Hibernate进行持久化的开发工作,所以有必要详细了解这方面的知识. ps:这里有个问题就是刷新表的时候速度太慢了.还不如自己手动去创建.如果表太多倒是可以采取批量生成的策略. 在 ...
- PowerDesigner 打印错误
PowerDesigner打开pdm文件时报“打印错误”(解决) 原创作品,出自 “深蓝的blog” 博客,欢迎转载,转载时请务必注明出处,否则追究版权法律责任. 深蓝的blog:http://b ...
- mysql的引擎选择
MyISAM 和InnoDB 讲解 InnoDB和MyISAM是许多人在使用MySQL时最常用的两个表类型,这两个表类型各有优劣,视具体应用而定.基本的差别为:MyISAM类型不支持事务处理等高级处理 ...
- Java模拟http请求远程调用接口工具类
package ln; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamRea ...
- SHELL (3) —— 变量知识进阶和实践
摘自:Oldboy Linux运维——SHELL编程实战 SHELL中特殊切重要的变量 位置变量 作用说明 $0 获取当前执行的Shell脚本的文件名,如果执行脚本包含了路径,那么就包括脚本路径 $n ...