题目大意:有n个点, 每个点有一个数字0 - 9, 第 i 个点只能到 第(i * i + 1)个点,问你在哪个点出发走n次构成的数字串最大。

思路:利用求后缀数组的倍增比较思想, 许多细节需要注意。

 #include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int>
#define piii pair<int, pair<int,int>>
using namespace std; const int N=2e5+;
const int M=1e4+;
const int inf=0x3f3f3f3f;
const LL INF=0x3f3f3f3f3f3f3f3f;
const int mod=1e9 + ; int n, tot, a[N], nx[N][], sa[N], t[N], t2[N], c[N], nxk[N], ans[N];
vector<int> prek[N];
void buildSa(int n, int m) {
int i, j, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = a[i]]++, nxk[i] = i;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[i]]] = i; for(int k = ; k <= n; k <<= ) {
for(i = ; i < n; i++) nxk[i] = nx[nxk[i]][], prek[i].clear();
for(i = ; i < n; i++) prek[nxk[i]].push_back(i);
int p = ;
for(i = ; i < n; i++) {
for(j = ; j < prek[sa[i]].size(); j++)
y[p++] = prek[sa[i]][j];
}
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(i = ; i < n; i++) {
if(y[sa[i - ]] == y[sa[i]] && y[nxk[sa[i - ]]] == y[nxk[sa[i]]])
x[sa[i]] = p - ;
else x[sa[i]] = p++;
}
if(p >= n) break;
m = p;
}
}
int main() {
int T; scanf("%d", &T);
for(int cas = ; cas <= T; cas++) {
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%1d", &a[i]);
} for(int i = ; i < n; i++) {
nx[i][] = (1ll * i * i + ) % n;
} for(int j = ; j < ; j++) {
for(int i = ; i < n; i++) {
nx[i][j] = nx[nx[i][j - ]][j - ];
}
}
buildSa(n, );
tot = ;
int now = sa[n - ];
for(int i = ; i <= n; i++) {
ans[tot++] = a[now];
now = nx[now][];
}
printf("Case #%d: ", cas);
for(int i = ; i < tot; i++)
printf("%d", ans[i]);
puts("");
}
return ;
}
/*
*/

2017 icpc 沈阳 G - Infinite Fraction Path的更多相关文章

  1. HDU6223——2017ICPC沈阳G Infinite Fraction Path

    题意: 给定一个数字串,每个位子都能向(i*i+1)%n的位子转移,输出路径上,字典序最大的,长度为n的串. 参考:https://www.cnblogs.com/mountaink/p/954144 ...

  2. HDU6223 && 2017沈阳ICPC: G. Infinite Fraction Path——特殊图&&暴力

    题意 给定一个数字串,每个位子都能向(i*i+1)%n的位子转移,输出在路径上.字典序最大的.长度为n的串($n \leq 150000$). 分析 先考虑一个暴力的方法,考虑暴力每个x,然后O(n) ...

  3. ACM-ICPC 2017 沈阳赛区现场赛 G. Infinite Fraction Path && HDU 6223(BFS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6223 参考题解:https://blog.csdn.net/qq_40482495/article/d ...

  4. 2017 ACM/ICPC 沈阳 G题 Infinite Fraction Path

    The ant Welly now dedicates himself to urban infrastructure. He came to the kingdom of numbers and s ...

  5. hdu6223 Infinite Fraction Path 2017沈阳区域赛G题 bfs加剪枝(好题)

    题目传送门 题目大意:给出n座城市,每个城市都有一个0到9的val,城市的编号是从0到n-1,从i位置出发,只能走到(i*i+1)%n这个位置,从任意起点开始,每走一步都会得到一个数字,走n-1步,会 ...

  6. 2017沈阳区域赛Infinite Fraction Path(BFS + 剪枝)

    Infinite Fraction Path Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java ...

  7. HDU6223 Infinite Fraction Path bfs+剪枝

    Infinite Fraction Path 这个题第一次看见的时候,题意没搞懂就没做,这第二次也不会呀.. 题意:第i个城市到第(i*i+1)%n个城市,每个城市有个权值,从一个城市出发走N个城市, ...

  8. Infinite Fraction Path HDU 6223 2017沈阳区域赛G题题解

    题意:给你一个字符串s,找到满足条件(s[i]的下一个字符是s[(i*i+1)%n])的最大字典序的长度为n的串. 思路:类似后缀数组,每次倍增来对以i开头的字符串排序,复杂度O(nlogn).代码很 ...

  9. 【赛后补题】(HDU6223) Infinite Fraction Path {2017-ACM/ICPC Shenyang Onsite}

    场上第二条卡我队的题目. 题意与分析 按照题意能够生成一个有环的n个点图(每个点有个位数的权值).图上路过n个点显然能够生成一个n位数的序列.求一个最大序列. 这条题目显然是搜索,但是我队在场上(我负 ...

随机推荐

  1. 【BZOJ2178】圆的面积并(辛普森积分)

    [BZOJ2178]圆的面积并(辛普森积分) 题面 BZOJ 权限题 题解 把\(f(x)\)设为\(x\)和所有圆交的线段的并的和. 然后直接上自适应辛普森积分. 我精度死活一个点过不去,不要在意我 ...

  2. 前端学习 -- Css -- 行间距

    在CSS并没有为我们提供一个直接设置行间距的方式,我们只能通过设置行高来间接的设置行间距,行高越大行间距越大.使用line-height来设置行高 .行高类似于我们上学单线本,单线本是一行一行,线与线 ...

  3. 【洛谷P3916】图的遍历

    题目大意:给定一个 N 个点,M 条边的有向图,求每个点能够到达的节点的最大编号是多少. 题解:因为题中所给图不一定是一个 DAG,因此无法进行按照拓扑序来动态规划,需要另辟蹊径.由于求的是每个节点能 ...

  4. Python远程调试Openstack

    前言 由于开始着手openstack运维方面的东西,我这颗大白菜必须要学一学这个高端的东西啦. 准备 pycharm依赖于专业版(这里需要注意,我前面浪费了好多时间...)下载并安装pycharm,网 ...

  5. error while loading shared libraries: libmysqlcppconn.so.7: cannot open shared object file: No such file or directory

    1. 即使libmysqlcppconn.so.7和与之相关存在,也报这个错误. 解决方法:临时添加LD_LIBRARY_PATH, 假使 libmysqlcppconn.so在/usr/local/ ...

  6. php 访问错误日志

    /usr/local/php/var/log/php-fpm.log」—————————

  7. 枚举类型---java基础代码

    package com.mon11.day4; /** * 类说明 :定义枚举 * @author 作者 : chenyanlong * @version 创建时间:2017年11月4日 */ pub ...

  8. Java基础-Java中的并法库之重入读写锁(ReentrantReadWriteLock)

    Java基础-Java中的并法库之重入读写锁(ReentrantReadWriteLock) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在学习Java的之前,你可能已经听说过读 ...

  9. cas单点登录实现

    前言 此文为记录单点登录实现过程,包括cas服务端和客户端的定制扩展 服务端 单点登录服务端采用cas,以cas-server-webapp版本号为3.5.2.1为基础进行定制扩展实现. 定制实现的源 ...

  10. Linux - Port 端口检测方式

    ss 和 netstat 区别 netstat是遍历/proc下面每个PID目录: ss直接读/proc/net下面的统计信息. 所以ss执行的时候消耗资源以及消耗的时间都比netstat少很多 ne ...