题目大意:有n个点, 每个点有一个数字0 - 9, 第 i 个点只能到 第(i * i + 1)个点,问你在哪个点出发走n次构成的数字串最大。

思路:利用求后缀数组的倍增比较思想, 许多细节需要注意。

 #include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int,int>
#define piii pair<int, pair<int,int>>
using namespace std; const int N=2e5+;
const int M=1e4+;
const int inf=0x3f3f3f3f;
const LL INF=0x3f3f3f3f3f3f3f3f;
const int mod=1e9 + ; int n, tot, a[N], nx[N][], sa[N], t[N], t2[N], c[N], nxk[N], ans[N];
vector<int> prek[N];
void buildSa(int n, int m) {
int i, j, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = a[i]]++, nxk[i] = i;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[i]]] = i; for(int k = ; k <= n; k <<= ) {
for(i = ; i < n; i++) nxk[i] = nx[nxk[i]][], prek[i].clear();
for(i = ; i < n; i++) prek[nxk[i]].push_back(i);
int p = ;
for(i = ; i < n; i++) {
for(j = ; j < prek[sa[i]].size(); j++)
y[p++] = prek[sa[i]][j];
}
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(i = ; i < n; i++) {
if(y[sa[i - ]] == y[sa[i]] && y[nxk[sa[i - ]]] == y[nxk[sa[i]]])
x[sa[i]] = p - ;
else x[sa[i]] = p++;
}
if(p >= n) break;
m = p;
}
}
int main() {
int T; scanf("%d", &T);
for(int cas = ; cas <= T; cas++) {
scanf("%d", &n);
for(int i = ; i < n; i++) {
scanf("%1d", &a[i]);
} for(int i = ; i < n; i++) {
nx[i][] = (1ll * i * i + ) % n;
} for(int j = ; j < ; j++) {
for(int i = ; i < n; i++) {
nx[i][j] = nx[nx[i][j - ]][j - ];
}
}
buildSa(n, );
tot = ;
int now = sa[n - ];
for(int i = ; i <= n; i++) {
ans[tot++] = a[now];
now = nx[now][];
}
printf("Case #%d: ", cas);
for(int i = ; i < tot; i++)
printf("%d", ans[i]);
puts("");
}
return ;
}
/*
*/

2017 icpc 沈阳 G - Infinite Fraction Path的更多相关文章

  1. HDU6223——2017ICPC沈阳G Infinite Fraction Path

    题意: 给定一个数字串,每个位子都能向(i*i+1)%n的位子转移,输出路径上,字典序最大的,长度为n的串. 参考:https://www.cnblogs.com/mountaink/p/954144 ...

  2. HDU6223 && 2017沈阳ICPC: G. Infinite Fraction Path——特殊图&&暴力

    题意 给定一个数字串,每个位子都能向(i*i+1)%n的位子转移,输出在路径上.字典序最大的.长度为n的串($n \leq 150000$). 分析 先考虑一个暴力的方法,考虑暴力每个x,然后O(n) ...

  3. ACM-ICPC 2017 沈阳赛区现场赛 G. Infinite Fraction Path && HDU 6223(BFS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6223 参考题解:https://blog.csdn.net/qq_40482495/article/d ...

  4. 2017 ACM/ICPC 沈阳 G题 Infinite Fraction Path

    The ant Welly now dedicates himself to urban infrastructure. He came to the kingdom of numbers and s ...

  5. hdu6223 Infinite Fraction Path 2017沈阳区域赛G题 bfs加剪枝(好题)

    题目传送门 题目大意:给出n座城市,每个城市都有一个0到9的val,城市的编号是从0到n-1,从i位置出发,只能走到(i*i+1)%n这个位置,从任意起点开始,每走一步都会得到一个数字,走n-1步,会 ...

  6. 2017沈阳区域赛Infinite Fraction Path(BFS + 剪枝)

    Infinite Fraction Path Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java ...

  7. HDU6223 Infinite Fraction Path bfs+剪枝

    Infinite Fraction Path 这个题第一次看见的时候,题意没搞懂就没做,这第二次也不会呀.. 题意:第i个城市到第(i*i+1)%n个城市,每个城市有个权值,从一个城市出发走N个城市, ...

  8. Infinite Fraction Path HDU 6223 2017沈阳区域赛G题题解

    题意:给你一个字符串s,找到满足条件(s[i]的下一个字符是s[(i*i+1)%n])的最大字典序的长度为n的串. 思路:类似后缀数组,每次倍增来对以i开头的字符串排序,复杂度O(nlogn).代码很 ...

  9. 【赛后补题】(HDU6223) Infinite Fraction Path {2017-ACM/ICPC Shenyang Onsite}

    场上第二条卡我队的题目. 题意与分析 按照题意能够生成一个有环的n个点图(每个点有个位数的权值).图上路过n个点显然能够生成一个n位数的序列.求一个最大序列. 这条题目显然是搜索,但是我队在场上(我负 ...

随机推荐

  1. Problem C: 多线程 解题报告

    Problem C: 多线程 Description 多线程是一种常见的加速手段,利用多个线程同时处理不同的任务可以一定程度上减少总耗时,达到提高效率的目的.然而,多个线程间的执行顺序是完全不可控的, ...

  2. 【uoj34】 多项式乘法

    http://uoj.ac/problem/34 (题目链接) 题意 求两个多项式的乘积 Solution 挂个FFT板子. 细节 FFT因为要满足$n$是$2$的幂,所以注意数组大小. 代码 // ...

  3. 【uoj5】 NOI2014—动物园

    http://uoj.ac/problem/5 (题目链接) 题意 求字符串各个前缀的前缀与后缀相同但不重叠的子串的个数+1之积 Solution KMP.第一遍求next和符合条件的可以重叠的子串. ...

  4. debian9使用systemd部署etcd集群

    在centos上,是可以直接使用yum安装etcd的: # yum list | grep etcd etcd.x86_64 3.2.9-3.el7 @extras 但是,在debian上却没有安装包 ...

  5. CF679E Bear and Bad Powers of 42

    一段时间不写线段树标记,有些生疏了 codeforces 679e Bear and Bad Powers of 42 - CHADLZX - 博客园 关键点是:42的次幂,在long long范围内 ...

  6. 【uoj428】普通的计数题

    Portal --> uoj428 Solution 不会胖子的一个log正解qwq只能怂怂滴写分治了qwq ​ 首先就是一个我想不到的转化qwq ​ 我们将第\(i\)次操作加入的数看成一个编 ...

  7. win32 ini

    原文:https://www.cnblogs.com/qq78292959/archive/2012/06/10/2544389.html Windows操作系统专门为此提供了6个API函数来对配置设 ...

  8. ThreadLocal实现线程范围的共享变量

    一.如何理解线程范围内共享数据 1.static int num=0; 2.线程1访问num变量,并设置为num=2:线程2访问num变量,并设置为num=3: 3.当线程1中对象A.B.C 在访问线 ...

  9. poj 1776 Task Sequences

    http://poj.org/problem?id=1776 题意: 有一个机器要完成N个作业, 给你一个N*N的矩阵, M[i][j]=1,表示完成第i个作业后不用重启机器,继续去完成第j个作业 M ...

  10. spring Mvc Web 编码相关 [model 到 视图传递数据] (九)

    在某种编码环境,由bean注解的参数可能会发生乱码问题. 即可页面web.xml或其他地方都设备UTF-8, 但还是会有这样的问题. 首先不要使用model传到视图的数据. 第二,不要request. ...