题面

Min-Max容斥:对于集合S

$min(S)=\sum_{s∈S}(-1)^{|s|+1}max(s)$

$max(S)=\sum_{s∈S}(-1)^{|s|+1}min(s)$

那么这个题就比较板子了,$min(s)$就是$s$任意一位有值的期望,也就是某个数字和$s$有交

不太好求?再容斥一下转化成求$s$没交的,也就是补集,这是个子集和,可以FWT或者我不会的FMT

 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=(<<)+;
const double eps=1e-;
int n,all; double ans,pro[N];
int K(int s)
{
int cnt=;
while(s)
cnt++,s-=s&-s;
return cnt%?:-;
}
int main()
{
scanf("%d",&n),all=(<<n)-;
for(int i=;i<=all;i++)
scanf("%lf",&pro[i]);
for(int i=;i<=all+;i<<=)
{
int len=i>>;
for(int j=;j<=all;j+=i)
for(int k=j;k<j+len;k++)
pro[k+len]+=pro[k];
}
for(int i=;i<=all;i++)
if(-pro[i^all]>eps) ans+=K(i)/(-pro[i^all]);
fabs(ans)<=eps?printf("INF"):printf("%.10f",ans);
return ;
}

解题:HAOI 2015 按位或的更多相关文章

  1. [HAOI 2015]按位或

    Description 题库链接 刚开始你有一个数字 \(0\) ,每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或( \(\text{or}\) )操作.选择数字 ...

  2. cogs 1963. [HAOI 2015] 树上操作 树链剖分+线段树

    1963. [HAOI 2015] 树上操作 ★★★☆   输入文件:haoi2015_t2.in   输出文件:haoi2015_t2.out   简单对比时间限制:1 s   内存限制:256 M ...

  3. 树上操作[HAOI 2015]

    树链剖分裸题: 树剖点这里:传送门 代码: #include<bits/stdc++.h> #define sight(c) ('0'<=c&&c<='9') ...

  4. [bzoj 4034][HAOI 2015]树上操作

    Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...

  5. [HAOI 2015]树上染色

    Description 题库链接 给出一棵 \(n\) 个节点的树,边有权值.让你将树上 \(k\) 个点染黑,剩余 \(n-k\) 个点染白.染色后记一种染色方案的价值为黑点间两两距离和以及白点间两 ...

  6. 【HAOI 2015】 树上操作

    [题目链接] 点击打开链接 [算法] 树链剖分 子树的DFS序是连续的一段! [代码] #include<bits/stdc++.h> using namespace std; #defi ...

  7. 洛谷P3178[HAOI]2015 树上操作

    题目 树剖裸题,这个题更可以深刻的理解树剖中把树上的节点转换为区间的思想. 要注意在区间上连续的节点,一定是在一棵子树中. #include <bits/stdc++.h> #define ...

  8. [总结]其他杂项数学相关(定理&证明&板子)

    目录 写在前面 一类反演问题 莫比乌斯反演 快速莫比乌斯变换(反演)与子集卷积 莫比乌斯变换(反演) 子集卷积 二项式反演 内容 证明 应用举例 另一形式 斯特林反演 第一类斯特林数 第二类斯特林数 ...

  9. NOI 2015 滞后赛解题报告

    报同步赛的时候出了些意外.于是仅仅能做一做"滞后赛"了2333 DAY1 T1离线+离散化搞,对于相等的部分直接并查集,不等部分查看是否在同一并查集中就可以,code: #incl ...

随机推荐

  1. Django Rest Framework源码剖析(三)-----频率控制

    一.简介 承接上篇文章Django Rest Framework源码剖析(二)-----权限,当服务的接口被频繁调用,导致资源紧张怎么办呢?当然或许有很多解决办法,比如:负载均衡.提高服务器配置.通过 ...

  2. 20155232《网络对抗》Exp2 后门原理与实践

    20155232<网络对抗>Exp2 后门原理与实践 问题回答 1.例举你能想到的一个后门进入到你系统中的可能方式? 通过网页上弹出来的软件自动安装 2.例举你知道的后门如何启动起来(wi ...

  3. 20155233 《网络对抗技术》EXP3 免杀原理与实践

    正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用shellcode编程等免杀工具或技巧 使用msf编码器生成jar包 输入命令msfvenom -p ...

  4. 预定义的类型“System.Object”未定义或未导入

    打开一个以前的程序 ,发现报这个错误.检查了程序,发现程序的引用 System 不见了 ,尝试 引用失败.. 查了有人说重新建立 Sln文件有用.. 一头雾水,随后 尝试操作 ,程序有用了 具体步骤: ...

  5. 类调用自己的静态方法必须把该方法设置为public

    否则调用不了 ParaChecker.isOK(bindingResult); public class ParaChecker { static BaseResult paraCheck(Bindi ...

  6. CS50.3

    1,int()取整函数 2,RPG(role playing game )角色扮演游戏 3,代码写了,要跑,需要compiler (编译器) 4,CLI(command-line interface) ...

  7. 生成本地测试用https证书,支持通配符和多域名,初学OpenSSL

    18-01-26在v2ex上看到一妹纸发的<身为一个 21 岁的年轻程序员,我已经腰突了(躺>,哈哈,感同身受,想到这几天我左腿麻木持续了好几天,前几天屁股疼的只要坐下就站不起来,不过站着 ...

  8. muduo网络库学习笔记(三)TimerQueue定时器队列

    目录 muduo网络库学习笔记(三)TimerQueue定时器队列 Linux中的时间函数 timerfd简单使用介绍 timerfd示例 muduo中对timerfd的封装 TimerQueue的结 ...

  9. .net转PHP从零开始-配置visual studio 2013 PHP开发环境php for visual studio

    作为一个.net开发者,一直在visual studio这款强大的编辑器宠爱下,其他编辑器都不会用,也用着不熟练.最近这不是转php吗,使用php编辑器很不爽,觉得还是用visual studio舒服 ...

  10. 《Linux内核设计与实现》 第一、二章学习笔记

    第一章 Linux内核简介 一.Unix 1.Unix的特点 简洁 绝大部分东西都被当做文件对待.这种抽象使对数据和对设备的操作都是通过一套相同的系统调用借口来进行的:open(),read(),wr ...