MT【180】齐次化+换元
已知实数$a,b$满足$a^2-ab-2b^2=1,$则$a^2+b^2$的取值范围_____

解答:
$\textbf{方法一}$
由已知得$(a-2b)(a+b)=1$,设$x=a-2b,y=a+b$,则$xy=1,a=\dfrac{x+2y}{3},b=\dfrac{y-x}{3}$,
得$a^2+b^2=\dfrac{2x^2+5y^2+2}{9}\ge\dfrac{2\sqrt{10}+2}{9}$
$\textbf{方法二}$
齐次化$t=\dfrac{a^2+b^2}{a^2-ab-2b^2}$
得$(t-1)a^2-tab+(-2t-1)b^2=0,\Delta=t^2-4(t-1)(-2t-1)=9t^2-4t-4\ge0$
得$t\ge\dfrac{2\sqrt{10}+2}{9}$
MT【180】齐次化+换元的更多相关文章
- [转]二重积分换元法的一种简单证明 (ps:里面的符号有点小错误,理解就好。。。
---恢复内容开始--- 10.3二重积分的换元积分法 在一元函数定积分的计算中,我们常常进行换元,以达删繁就简的目的,当然,二重积分也有换元积分的问题. 首先让我们回顾一下前面曾讨论的一个事实. 设 ...
- MT【278】二次齐次化
对于$c>0$,当非零实数$a,b$满足$4a^2-2ab+4b^2-c=0,$且使$|2a+b|$最大时,$\dfrac{3}{a}-\dfrac{4}{b}+\dfrac{5}{c}$的最小 ...
- MT【4】坐标平移后齐次化
简答:通过坐标平移可以将A点移到原点,设BC:mx’+ny’=1,联立坐标变换后的椭圆方程和BC,将$\frac{y}{x}$看成斜率k,得到关于k的一元二次方程,由题意两根之积为-1,可得.
- Mathematica求微分换元
[转载请注明出处]http://www.cnblogs.com/mashiqi 2017/12/16 有时我们需要对PDEs中的各项进行变量替换,比如把$\frac{\text{d}}{\text{d ...
- YAPTCHA UVALive - 4382(换元+威尔逊定理)
题意就是叫你求上述那个公式在不同N下的结果. 思路:很显然的将上述式子换下元另p=3k+7则有 Σ[(p-1)!+1/p-[(p-1)!/p]] 接下来用到一个威尔逊定理,如果p为素数则 ( p -1 ...
- 老齐python-基础4(元祖、字典、集合)
1.元祖 元祖的特性结合了字符串和列表 元祖是用圆括号括起来的,其中的元素之间用逗号(英文半角)隔开.元祖中的元素是任意类型的python对象(包括以后自定义的对象) 元祖中的元素不可更改,所以修改列 ...
- 齐博x1换服务器如何转移网站?
如果你要把网站从本机传到服务器,又或者要更换服务器,请按下面的操作处理 第一步,必须要在原网站后台备份数据. 第二步,把备份好的网站所有文件,传到新服务器或空间 特别要注意 \cache\ 目录下建议 ...
- MT【27】对数方程组求范围
解答:3 评论:此类题目通性通法为换元后化归为线性规划问题.当然不等式凑配也是常见技巧,只是容易范围扩大或者缩小.
- MT【318】分式不等式双代换
已知$a,b>0$且$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{3}$,求$\dfrac{1}{a-1}+\dfrac{4}{b-1}$的最小值. 解:令$m=\d ...
随机推荐
- VBA读取、增加自定义和修改文档属性
读取系统文档属性 Sub read()On Error Resume Nextrw = 1Worksheets(1).ActivateFor Each p In ActiveWorkbook.Buil ...
- css样式显示省略号
用css样式显示省略号,记 .xx{ display: block; width:200px;/*对宽度的定义,根据情况修改*/ overflow: hidden; white-space: n ...
- 20155211 网络攻防技术 Exp08 Web基础
20155211 网络攻防技术 Exp08 Web基础 实践内容 Web前端HTML,能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML. We ...
- 20155323刘威良 网络对抗《网络攻防》 Exp1 PC平台逆向破解(5)M
实践目标 本次实践的对象是linux的可执行文件 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShell,会返回一个可 ...
- 微信小程序 倒计时
这两天在看微信小程序,参考了网上的资料,做了一个倒计时的练习,记录如下. 本文作者:罗兵 原地址:https://www.cnblogs.com/hhh5460/p/9981064.html 0.效果 ...
- REST-framework快速构建API--初体验
一.快速上手 1.环境准备 安装restframework,注册app pip install djangorestframework INSTALLED_APPS = [ 'django.contr ...
- 《Effective Java》学习笔记 —— 通用程序设计
本章主要讨论局部变量.控制结构.类库.反射.本地方法的用法及代码优化和命名惯例. 第45条 将局部变量的作用域最小化 * 在第一次使用的它的地方声明局部变量(就近原则). * 几乎每个局部变量的声明都 ...
- vue基础项目安装教程
安装node.js 从node.js官网下载并安装node,安装过程很简单,一路“下一步”就可以了. 安装完成之后,打开命令行工具,输入 node -v,如下图,如果出现相应的版本号,则说明安装成功. ...
- [SHELL]输入输出重定向与管道
一 . 输出重定向(将命令的输出重定向到文件): ls -al > test 以覆盖的方式写入 ls -al >> test 以追加的方式写入 二 . 输入重定向(将文件的内容重定向 ...
- Apache服务器出现Forbidden 403错误提示的解决方法总结
在配置Linux的 Apache服务时,经常会遇到http403错误,我今天配置测试时也出现了,最后解决了,总结了一下.http 403错误是拒绝访问的意思,有很多原因的.还有,这些问题在win平台的 ...