Description:

甲乙进行比赛。

他们各有k1,k2个集合[Li,Ri]
每次随机从他们拥有的每个集合中都取出一个数
S1=sigma甲取出的数,S2同理
若S1>S2甲胜 若S1=S2平局 否则乙胜
分别求出甲胜、平局、乙胜的概率。
(显然这个概率是有理数,记为p/q,则输出答案为(p/q)%(1e9+7))(逆元)
注意 多组数据

Solution:

题解推荐

非常没有思路的神仙题。

大概的收获就是:

0.求概率,就是胜的方案数,除以总的情况数。

1.第一步的操作非常巧妙。Ri-xi,Li+yi

直接决定了之后的边形。

大概是,一定要向已知的常数L,R靠拢,并且把涉及的变量的范围平移统一一下。

如果不进行这一步边形,∑xi+∑yi = 0 这个xi,yi的取值区间就很多了。

平移一下,使得左端点的取值都是0。而非负整数解有比较容易处理。

2.第二步:设右边的常数是m

∑xi+∑yi  < m -> ∑xi+∑yi <= m-1

这个是基本的操作,发现,小于号一般不容易考虑,许多结论中,小于等于,大于等于比较容易处理。

3.进一步操作:

∑xi+∑yi+k = m-1 利用上一步的<=号,进一步引入变量k,使得成为等式。并且,由于之前是<=号,所以,k的取值范围左端点也是0

这就容易处理多了。求方程解的个数。就是胜利的情况总数。

至此,方程转化完毕。

4.容斥:

比较自然了。类似硬币购物的思想。处理范围问题的好帮手。

5.组合数,箱子与球

gzz讲过的。多变量系数为1整数方程,直接转化为常数放进变量里。

我只能想到第0步。。。

对于推式子转化的题目,还是没有任何思路,

只能慢慢体会了。

51nod 1667 概率好题的更多相关文章

  1. 51Nod 1667 概率好题 - 容斥原理

    题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...

  2. 【51nod 1667】概率好题

    题目 甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S2同理 若S1>S2甲胜 若S1=S2平局 否则乙胜 分别 ...

  3. 【CF913F】Strongly Connected Tournament 概率神题

    [CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...

  4. 51nod 1105 二分好题

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1105 1105 第K大的数 基准时间限制:1 秒 空间限制:131072 ...

  5. 51nod 80分算法题

    1537:见前几篇. 1627:题意:给定n,m的网格(10^5),初始状态为(1,1),你每次可以瞬移到右下方(不可以同行同列逗留)任何一个方格里,求移动到n,m的方案数. 一句话题解:首先很容易想 ...

  6. 概率好题 Light OJ 1027

    题目大意:你在迷宫里,有n扇门,每个门有一个val,这个val可正可负,每次通过一扇门需要abs(x)分钟,如果这个门的val是正的,那么就直接出了迷宫,否则回到原地,问出去迷宫的期望是多少? 思路: ...

  7. A - Arcade Game Gym - 100814A (概率思维题)

    题目链接:https://cn.vjudge.net/contest/285964#problem/A 题目大意:每一次给你你一个数,然后对于每一次操作,可以将当前的数的每一位互换,如果互换后的数小于 ...

  8. LightOJ 1218 概率水题(几何分布)

    题意:给你一个n面骰子,问你投出所有面需要的次数的期望值是多少. 题解:放在过去估计秒解,结果现在自己想好久,还查了下,有人用极限证明...实际上仔细想想这种情况投出与前面不一样的概率p的倒数就是次数 ...

  9. 51nod1667 概率好题

    基准时间限制:4 秒 空间限制:131072 KB 分值: 640  甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S ...

随机推荐

  1. 《网络对抗》Exp5 MSF基础应用

    20155336<网络对抗>Exp5 MSF基础应用 一.基础知识回答 用自己的话解释什么是exploit,payload,encode exploit:渗透攻击的模块合集,将真正要负责攻 ...

  2. Python基础(list和tuple)可变集合和‘不可变’集合

    list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可以用一个list表示: >>> ...

  3. 10、MySQL 的复制

    10.1 复制的概述 10.2 配置复制 10.3 复制的原理 有两种 1.基于sql语句的复制:传输数据少(sql语句文件),就能复制大量的数据,不过由于一些自定义的函数问题,会有一些限制: 2.基 ...

  4. PostgreSQL内部结构与源代码研究索引页

    磨砺技术珠矶,践行数据之道,追求卓越价值 luckyjackgao@gmail.com 返回顶级页:PostgreSQL索引页 本页记录所有本人所写的PostgreSQL的内部结构和源代码研究相关文摘 ...

  5. python 回溯法 子集树模板 系列 —— 9、旅行商问题(TSP)

    问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初 ...

  6. 升级webpack2

    更新:webpack3已经出来了,官方说从2到升级到3不用改一行配置,98%的人没有错误. 项目中用的是webpack1.webpack2已经出来一段时间了.决定升级.其实改动不是很大.修改加测试共花 ...

  7. centos7 安装 telnet

    https://blog.csdn.net/wfh6732/article/details/55062016/ https://blog.csdn.net/typa01_kk/article/deta ...

  8. stl源码剖析 详细学习笔记 RB_tree (2)

    //---------------------------15/03/22---------------------------- //一直好奇KeyOfValue是什么,查了下就是一个和仿函数差不多 ...

  9. 冒泡排序算法的C++,Java和Python实现和冒泡排序算法三种语言效率的比较

    冒泡排序原理: 这一篇百度经验讲得很好,我不多说了 https://jingyan.baidu.com/article/6525d4b13f920bac7d2e9484.html 他讲的是C语言,没有 ...

  10. 微软职位内部推荐-Senior BSP Engineer

    微软近期Open的职位: The position of Sr. BSP engineer requires experience and good knowledge in mobile hardw ...