数论----gcd和lcm
gcd即最大公约数,lcm即最小公倍数。
首先给出a×b=gcd×lcm
证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm。
所以求lcm可以先求gcd,而求gcd的方法就是辗转相除法,也叫做欧几里德算法,核心为gcd(m,n)=gcd(n,m%n)
证明:令 k=gcd(m,n),则 k|m 并且 k|n;
令 j=gcd(n, m mod n), 则j|n 并且 j|(m mod n);
对于m, 可以用n 表示为 m=pn+(m mod n);
由引理可知 j|m(其中 x=p,y=1), 又 j|n,于是 j 是 m 和 n 的公约数(但不一定是最大的);
因为 k 是 m 和 n 的最大公约数,所以必有 k≥j;
通过另一种表示形式:(m mod n)=m-pn,同理可得:
k|(m mod n),又k|n,于是 k 是 (m mod n) 和 n 的公约数(也不一定是最大的);
同样由 j 是 n 和 (m mod n) 的最大公约数可以得到 j≥k;
由常识,得出结论 k=j,
即gcd(m,n) = gcd(n, m mod n) ,得证。
代码实现:
while循环:
LL gcd(LL a, LL b){
LL t;
while(b){
t = b;
b = a % b;
a = t;
}
return a;
}
递归:
LL gcd(LL a, LL b){
return b ? gcd(b, a%b) : a;
}
求lcm=a*b/gcd即可,但碰到一些恐怖的数据可能会溢出,应改成lcm=a/gcd*b。
最后给出一些公式:
gcd(ka, kb) = k * gcd(a, b)
lcm(ka, kb) = k * lcm(a, b)
lcm(S/a, S/b) = S/gcd(a, b)
参考:https://www.cnblogs.com/ider/archive/2010/11/16/gcd_euclid.html
https://www.cnblogs.com/linyujun/p/5167914.html
数论----gcd和lcm的更多相关文章
- 简单数论总结1——gcd与lcm
并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分 ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
- HDU 4497 GCD and LCM(数论+容斥原理)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- 数论——算数基本定理 - HDU 4497 GCD and LCM
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- HDU4497 GCD and LCM(数论,质因子分解)
HDU4497 GCD and LCM 如果 \(G \% L != 0\) ,那么输出 \(0\) . 否则我们有 \(L/G=(p_1^{r_1})\cdot(p_2^{r_2})\cdot(p_ ...
- HDU4497——GCD and LCM
这个题目挺不错的,看到是通化邀请赛的题目,是一个很综合的数论题目. 是这样的,给你三个数的GCD和LCM,现在要你求出这三个数有多少种可能的情况. 对于是否存在这个问题,直接看 LCM%GCD是否为0 ...
- Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...
- HDOJ 4497 GCD and LCM
组合数学 GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) ...
- hdu 4497 GCD and LCM 数学
GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...
随机推荐
- Windows下开启Redis PHP拓展
1. 安装Redis windows下redis的版本,git地址https://github.com/MSOpenTech/redis/releases 2. 打开phpInfo,查看当前PHP是N ...
- node.js 递归创建多级目录
fs.mkdir只能创建一级目录,所以我们可以自定义一个mkdirs函数,利用递归和回调来实现创建多级目录. function mkdirs(dirname, callback) { //检测目录是否 ...
- day42-多线程与多进程
一 进程与线程的概念 1.1 进程 考虑一个场景:浏览器,网易云音乐以及notepad++ 三个软件只能顺序执行是怎样一种场景呢?假如有两个程序A和B,程序A在执行到一半的过程中,需要读取大量的数据输 ...
- jquery接触初级-----juqery DOM操作 之一
1. DOM 分为三个部分:DOM core ,HTML_DOM,CSS_DOM: 1.1.document.getElementById(),document.getElementsByTagNam ...
- 静态函数造成GC的原因
有时候用deep profiling查看GC时会发现:一个父函数有GC,展开子层级看到一个很奇怪的 CX::ctor,表示CX进行了构造,然后打开父函数代码却完全看不到有new CX的地方,这个时候可 ...
- avalon2学习教程05属性操作
avalon2与avalon1的属性操作虽然都是使用ms-attr,但用法完全不一样. avalon1是这样操作属性的 其语法为 ms-attr-valueName="vmProp" ...
- [cocos2d-x]移动平台游戏开发(图)
FreeMind的.mm文件下载: http://yunpan.cn/cfL3QrrQVkVTd (提取码:a125)
- 一张图知道HTML5布局(图)
- Matlab实现BP网络识别字母
训练样本空间 每个样本使用5×5的二值矩阵表征一个字母.一共10个字母类型,分别是N,I,L,H,T,C,E,F,Z,V.每个字母9个样本.共90个. N1=[1,0,0,0,1; 1,0,0,0 ...
- numpy-Randow
Randow使用 http://blog.csdn.net/pipisorry/article/details/39508417 概率相关使用 转:http://www.cnblogs.com/Nau ...