4柱汉诺塔(zz)
多柱汉诺塔可以用Frame–Stewart算法来解决。
The Frame–Stewart algorithm, giving a presumably optimal solution for four (or even more) pegs, is described below:
- Let
be the number of disks. - Let
be the number of pegs. - Define
to be the minimum number of moves required to transfer n disks using r pegs
The algorithm can be described recursively:
- For some
,
, transfer the top
disks to a single peg other than the start or destination pegs, taking
moves. - Without disturbing the peg that now contains the top
disks, transfer the remaining
disks to the destination peg, using only the remaining
pegs, taking
moves. - Finally, transfer the top
disks to the destination peg, taking
moves.
The entire process takes
moves. Therefore, the count
should be picked for which this quantity is minimum.
This algorithm (with the above choice for
) is presumed to be optimal, and no counterexamples are known.
4柱的可以借助3柱的来完成,5柱的借助4柱的来完成,等等。下面是从网上找来的4柱汉诺塔的分析过程。
四塔问题:设有A,B,C,D四个柱子(有时称塔),在A柱上有由小到大堆放的n个盘子,如图所示。
今将A柱上的盘子移动到D柱上去。可以利用B,C柱作为工作栈用,移动的规则如下: ①每次只能移动一个盘子。 ②在移动的过程中,小盘子只能放到大盘子的上面。 设计并实现一个求解四塔问题的动态规划算法,并分析时间和空间复杂性。 算法思想: 用如下算法移动盘子(记为FourPegsHanoi): 1)、将A柱上n个盘子划分为上下两部分,下方部分共有k(1≤k≤n)个盘子,上方部分共有n - k个盘子。 2)、将A柱上面部分n–k个盘子使用FourPegsHanoi算法经过C、D柱移至B柱。 3)、将A柱剩余的k个盘子使用ThreePegsHanoi算法经过C柱移至D柱。 4)、将B柱上的n–k个盘子使用FourPegsHanoi算法经过A、C柱移至D柱。 ThreePegsHanoi算法如下(设三个柱子分别为A、B、C,A柱上共有k个盘子): 1)、将A柱上方k-1个盘子使用ThreePegsHanoi算法经过B柱移至C柱。 2)、将C柱上最后一个盘子直接移至C盘。 3)、将B柱上k-1个盘子使用ThreePegsHanoi算法经过A柱移至C柱。
算法步骤: 根据动态规划的四个步骤,求解如下: 1)、最优子结构性质: 四柱汉诺塔问题的最优解是用最少的移动次数将A柱上的盘子全部移到D柱上。当盘子总数为i时,我们不妨设使用FourPegsHanoi的最少移动次数为f(i)。相应的ThreePegsHanoi 算法移动次数为g(k),由于g(k)=2g(k-1)+1=2k -1,当k确定时,g(k)也是不变的。 f(i)为最优解时,其子问题f(i-k)也必为最优解。如果f(i-k)不是最优解,那么存在f’(i-k) < f(i-k)。用f’(i-k)替换f(i-k)将产生一个比f(i)更优的解。这与f(i)为最优解是矛盾的。所以本问题具有最优子结构性质。
2)、递归地定义问题的最优解: 根据上述FourPegsHanoi算法得到最少移动次数f(i):

通过这个表达式我们可以知道,k取那个值时f(i)的值,也就是说,不用具体操作,就可以知道移动的最少次数,并且知道k的值,所以在算法实现时,求出k的值是非常重要的。下面的代码就是用来求k的。
int FourPegHanoi::minMoves()
{
int min = -;
moves[][] = ;
splitter[] = ;
for(int i = ;i<= m_Plates;i++)
{
min = ;
for(int j=;j<=i;j++)
{
moves[i][j] = *moves[i-j][splitter[i-j]] - + (<<(j-)) ;
if(moves[i][j] < min)
{
min = moves[i][j];
splitter[i] = j;
}
}
}
for(int i=;i<=m_Plates;i++)
cout<<splitter[i]<<endl; return moves[m_Plates][splitter[m_Plates]];
}
时间空间复杂度分析:
1、时间复杂度
MinMovements算法的时间复杂度为:
T(n) = 1 + 2 + ... + n = n(n+1)/2 = O(n2)
2、空间复杂度
MinMovements算法占用的空间为m 和 s数组的大小:
即 (n+1)2 + (n+1) = O(n2)
通过分析m数组中记录了一些与结果不相关的数据,所以通过对MinMovements进行改进,可使占用空间减小为O(n)。
4柱汉诺塔(zz)的更多相关文章
- 多柱汉诺塔问题“通解”——c++
多柱汉诺塔问题 绪言 有位同学看到了我的初赛模拟卷上有一道关于汉诺塔的数学题.大概就是要求4柱20盘的最小移动次数. 他的数学很不错,找到了应该怎样推. 如果要把n个盘子移到另一个柱子上,步骤如下: ...
- hdu 1207 四柱汉诺塔
递推,汉诺塔I的变形. 这题真心没想到正确解法,越想越迷糊.这题看了别人题解过得,以后还是自己多想想,脚步太快并非好事. 贴上分析: 分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]= ...
- The Towers of Hanoi Revisited---(多柱汉诺塔)
Description You all must know the puzzle named "The Towers of Hanoi". The puzzle has three ...
- 四柱加强版汉诺塔HanoiTower----是甜蜜还是烦恼
我想很多人第一次学习递归的时候,老师或者书本上可能会举汉诺塔的例子. 但是今天,我们讨论的重点不是简单的汉诺塔算法,而是三柱汉诺塔的延伸.先来看看经典的三柱汉诺塔. 一.三柱汉诺塔(Hanoi_Thr ...
- 汉诺塔的问题:4个柱子,如果塔的个数变位a,b,c,d四个,现要将n个圆盘从a全部移到d,移动规则不变
四柱汉诺塔问题的求解程序.解题思路:如a,b,c,d四柱. 要把a柱第n个盘移到目标柱子(d柱),先把上层 分两为两部份,上半部份移到b柱,下半部分移到c柱,再把第n盘移到 目标柱子,然后,c柱盘子再 ...
- HDU汉诺塔系列
这几天刷了杭电的汉诺塔一套,来写写题解. HDU1207 汉诺塔II HDU1995 汉诺塔V HDU1996 汉诺塔VI HDU1997 汉诺塔VII HDU2064 汉诺塔III HDU2077 ...
- [递推]B. 【例题2】奇怪汉诺塔
B . [ 例 题 2 ] 奇 怪 汉 诺 塔 B. [例题2]奇怪汉诺塔 B.[例题2]奇怪汉诺塔 题目描述 汉诺塔问题,条件如下: 这里有 A A A. B B B. C C C 和 D D D ...
- codevs3145 汉诺塔问题
难度等级:白银 3145 汉诺塔问题 题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一 ...
- BZOJ 1019: [SHOI2008]汉诺塔
Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...
随机推荐
- Shape 与 InlineShape 的区别
Shape 对象代表文档中的图形对象,InlineShape 代表文档中的嵌入式图形对象.所谓嵌入式图形对象,是指将图像作为文字处理,在排版上以文字的方式进行排版. Shape 与 InlineSha ...
- zookeeper实现分布锁
分布式锁服务在大家的项目中或许用的不多,因为大家都把排他放在数据库那一层来挡.当大量的行锁.表锁.事务充斥着数据库的时候.一般web应用很多的瓶颈都在数据库上,这里给大家介绍的是减轻数据库锁负担的一种 ...
- linux下passwd命令设置修改用户密码
1.passwd 简单说明: 我们已经学会如何添加用户了,所以我们还要学习设置或修改用户的密码:passwd命令的用法也很多,我们只选如下的几个参数加以说明:想了解更多,请参考man passwd或p ...
- CCR源码分析-CCR架构
CCR,并发与协调运行时(Concurrency and Coordination Runtime).从名字里我们就可以知道,这个东东是用来简化并发程序设计的.为何要并发呢?因为我们有多个任务需要处理 ...
- ZOJ3732 Graph Reconstruction Havel-Hakimi定理
分析: 给定一个非负整数序列{dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化. 进一步,若图为简单图,则称此序列可简单图化 (来自百度百科) 可简单图化的判定可以用Have ...
- By类的使用
举例,页面上有5个table,每个table都有标题栏和内容栏你觉的我是把每个table的标题都放到List里面遍历使用还是现指定table,在获取table的标题栏使用呢明显后面的方便不容易乱麽所 ...
- 理解iPhone高清分辨率的问题
理解iPhone高清分辨率的问题可以有两个关键切入点: 1.像素坐标普通屏是480*320,Retina屏是960*640,而逻辑坐标系同为480*320: 2.Retina屏幕一个逻辑坐标点坐标包含 ...
- [洛谷2397]yyy loves Maths VI
题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...
- vs2010常用快捷方式
1.注释 直接打三个"///"就会出现 /// <summary> ///非方法体上 /// </summary> MusicStoreEntities s ...
- 非递归实现先序遍历 java leecode 提交
写完才知道自己学习都是似是而非啊,大家可以也在leecode上提交代码,纯手写,离开eclipse第一种方式:数据结构书上的,使用栈大概思路.1.不断将根节点的左孩子的左孩子直到为空,在这个过程入栈. ...