同余方程组

例题1pku2891Strange Way to Express Integers

中国剩余定理求的同余方程组mod 的数是两两互素的。然而本题(一般情况,也包括两两互素的情况,所以中国剩余定理成为了“时代的眼泪”)mod的数可能不是互素,所以要转换一下再求。

P=b1(mod a1);  P / a1 ==?~~~~b1

P =b2(mod a2);

P =b3(mod a3);

……

P =bn(mod an);

a1~an,b1~bn是给出来的。

解:

第一条:a1*x+b1= P

第二条:a2*y+b2= P

第一条减去第二条: a1*x - a2*y = b2-b1

设A=a1,B=-a2,K=b2-b1,得到了x(实际调用exgcd的时候不理会a2前面的负号)

如果K%d!=0,无解

否则,X=[ (x* K/d)%(B/d)+(B/d) ]%(B/d)

LCU表示最小公倍数

P= a1*X+b1+ 若干倍的LCU(a1,a2)(或者把Y=(K-AX)/B,再P=a2*Y+b2+ 若干倍的LCU(a1,a2)

所以新的b= a1*x+b1,新的a= LCU(a1,a2),

把新的b当成b1,新的a当成a1,再去和a3和b3结合,一直到最后结束,最后新的b就是X

 #include<cstdio>
#include<cstring>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long LL a1,b1,a2,b2; LL ax,ay;
LL exgcd(LL a,LL b)
{
if(b==) {ax=,ay=;return a;}
LL g=exgcd(b,a%b);
LL yy=ay;
ay=ax-a/b*ay;ax=yy;
return g;
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
while(scanf("%d",&n)!=EOF)
{
scanf("%lld%lld",&a1,&b1);
bool ok=;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&a2,&b2);
if(!ok) continue;
LL a,b,c,g;
a=a1,b=a2,c=b2-b1;
g=exgcd(a,b);
if(c%g!=) {ok=;continue;}
if(b/g<) b*=-;
ax=((ax*c/g)%(b/g)+(b/g))%(b/g);
a=b1+ax*a1;
g=a1*a2/exgcd(a1,a2);
a1=g;b1=a;
}
if(!ok) printf("-1\n");
else printf("%lld\n",b1);
}
return ;
}

【poj2891】

2016-02-02 09:44:06

【poj2891】同余方程组的更多相关文章

  1. poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组

    怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equ ...

  2. 【poj2891-Strange Way to Express Integers】拓展欧几里得-同余方程组

    http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓 ...

  3. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  4. HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)

    设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...

  5. 【hdu3579-Hello Kiki】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=3579 题解:同余方程组的裸题.注意输出是最小的正整数,不包括0. #include<cstdio> ...

  6. 【hdu1573-X问题】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 求小于等于N的正整数中有多少个X满足: X mod a0 = b0 X mod a1 = b1 …… X  ...

  7. poj3708:函数式化简+高精度进制转换+同余方程组

    题目大意 给定一个函数 找出满足条件   等于 k 的最小的x m,k,d已知 其中 m,k 很大需要使用高精度存储 思路: 对 函数f(m)进行化简 ,令t=ceil( log(d,m) ) 可以得 ...

  8. hdu1573:数论,线性同余方程组

    题目大意: 给定一个N ,m 找到小于N的  对于i=1....m,满足  x mod ai=bi  的 x 的数量. 分析 先求出 同余方程组 的最小解x0,然后 每增加lcm(a1...,am)都 ...

  9. POJ 1006 同余方程组

    以前的做法 #include<iostream> #include<cstdio> #include<algorithm> #include<cstring& ...

随机推荐

  1. mysql 交互式连接和非交互式连接

    交互式客户端定义为在mysql_real_connect()中使用CLIENT_INTERACTIVE选项的客户端 mysql_real_connect() 函数介绍 函数原型描述: MYSQL *m ...

  2. Day01 - Python 基础介绍

    1 Python 简介 1.1 Python 的由来 Python的创始人:吉多·范罗苏姆(Guido van Rossum) 1989年,吉多·范罗苏姆为了在阿姆斯特丹打发圣诞节假期时间,开发的一个 ...

  3. session的固化(搁置)

    Session在其生命周期中,可能会在运行时状态和持久化状态之间转换. 会话从运行时状态变为持久化状态的过程称为 -- 搁置:在以下情况下,Session会被搁置: 当服务器总之或单个Web应用终止时 ...

  4. spring注解:@PostConstruct和@PreDestroy

    关于在spring  容器初始化 bean 和销毁前所做的操作定义方式有三种: 第一种:通过@PostConstruct 和 @PreDestroy 方法 实现初始化和销毁bean之前进行的操作 第二 ...

  5. day-7

    /* 倒数7天了 某一天 某一刻 某次呼吸 我们终将再分离 而我的 自传里 曾经有你 没有遗憾的诗句 诗句里 充满感激 (小仙女博客抄来的233) 是啊 就快要结束了 曲终人散 上午被错误数据卡了一小 ...

  6. CSS中Position属性

    也许你看到这个标题觉得很简单,确实这是一篇关于CSS中Position属性基础知识的文章,但是关于Position的一些细节也许你不了解. 1.简介 position有五个属性: static | r ...

  7. mysql命令使用

    1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码 1.连接到本机上的MYSQL.首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root ...

  8. Java文件操作二:File文件的方法

    一.文件的判断方法 判断方法 .boolean canExecute()判断文件是否可执行 .boolean canRead()判断文件是否可读 .boolean canWrite() 判断文件是否可 ...

  9. andriod 中设置sdk升级代理服务器

    Android SDK 在线更新镜像服务器资源: 大连东软信息学院镜像服务器地址: http://mirrors.neusoft.edu.cn 端口:80 北京化工大学镜像服务器地址: IPv4: h ...

  10. WIN7 64位配置Oracle SQL Developer工具

    在使用Oracle SQL 的过程中,很多参考资料,辅导机构,各种书籍绝大多数都是使用PL/SQL进行讲解,但是问题是PL/SQL对WIN7 64位系统支持不好,网上有各种各样的配置教程,我尝试了很多 ...