同余方程组

例题1pku2891Strange Way to Express Integers

中国剩余定理求的同余方程组mod 的数是两两互素的。然而本题(一般情况,也包括两两互素的情况,所以中国剩余定理成为了“时代的眼泪”)mod的数可能不是互素,所以要转换一下再求。

P=b1(mod a1);  P / a1 ==?~~~~b1

P =b2(mod a2);

P =b3(mod a3);

……

P =bn(mod an);

a1~an,b1~bn是给出来的。

解:

第一条:a1*x+b1= P

第二条:a2*y+b2= P

第一条减去第二条: a1*x - a2*y = b2-b1

设A=a1,B=-a2,K=b2-b1,得到了x(实际调用exgcd的时候不理会a2前面的负号)

如果K%d!=0,无解

否则,X=[ (x* K/d)%(B/d)+(B/d) ]%(B/d)

LCU表示最小公倍数

P= a1*X+b1+ 若干倍的LCU(a1,a2)(或者把Y=(K-AX)/B,再P=a2*Y+b2+ 若干倍的LCU(a1,a2)

所以新的b= a1*x+b1,新的a= LCU(a1,a2),

把新的b当成b1,新的a当成a1,再去和a3和b3结合,一直到最后结束,最后新的b就是X

 #include<cstdio>
#include<cstring>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long LL a1,b1,a2,b2; LL ax,ay;
LL exgcd(LL a,LL b)
{
if(b==) {ax=,ay=;return a;}
LL g=exgcd(b,a%b);
LL yy=ay;
ay=ax-a/b*ay;ax=yy;
return g;
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
while(scanf("%d",&n)!=EOF)
{
scanf("%lld%lld",&a1,&b1);
bool ok=;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&a2,&b2);
if(!ok) continue;
LL a,b,c,g;
a=a1,b=a2,c=b2-b1;
g=exgcd(a,b);
if(c%g!=) {ok=;continue;}
if(b/g<) b*=-;
ax=((ax*c/g)%(b/g)+(b/g))%(b/g);
a=b1+ax*a1;
g=a1*a2/exgcd(a1,a2);
a1=g;b1=a;
}
if(!ok) printf("-1\n");
else printf("%lld\n",b1);
}
return ;
}

【poj2891】

2016-02-02 09:44:06

【poj2891】同余方程组的更多相关文章

  1. poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组

    怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equ ...

  2. 【poj2891-Strange Way to Express Integers】拓展欧几里得-同余方程组

    http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓 ...

  3. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  4. HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)

    设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...

  5. 【hdu3579-Hello Kiki】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=3579 题解:同余方程组的裸题.注意输出是最小的正整数,不包括0. #include<cstdio> ...

  6. 【hdu1573-X问题】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 求小于等于N的正整数中有多少个X满足: X mod a0 = b0 X mod a1 = b1 …… X  ...

  7. poj3708:函数式化简+高精度进制转换+同余方程组

    题目大意 给定一个函数 找出满足条件   等于 k 的最小的x m,k,d已知 其中 m,k 很大需要使用高精度存储 思路: 对 函数f(m)进行化简 ,令t=ceil( log(d,m) ) 可以得 ...

  8. hdu1573:数论,线性同余方程组

    题目大意: 给定一个N ,m 找到小于N的  对于i=1....m,满足  x mod ai=bi  的 x 的数量. 分析 先求出 同余方程组 的最小解x0,然后 每增加lcm(a1...,am)都 ...

  9. POJ 1006 同余方程组

    以前的做法 #include<iostream> #include<cstdio> #include<algorithm> #include<cstring& ...

随机推荐

  1. 【转】warning C4819,该文件保存为 Unicode 格式以防止数据丢失,处理方法

    以下的解决方案只是把错误给屏蔽掉而已,并不能真正解决这个警告.仅供参考! 当项目引用到外部源代码后,经常出现4819错误,警告信息如下: warning C4819: 该文件包含不能在当前代码页(93 ...

  2. Android开发之显示进度对话框

    一般有两种对话框,一个是普通的简单的please wait对话框,另一种是创建显示操作进度(如下载状态)的对话框. 第一种普通的效果图如下: 第一种普通的实现代码: public void onCli ...

  3. nginx介绍及安装

    nginx(Engine x)      静态的www软件    特点:        配置简单        高并发,1-2w,基于异步IO模型(epoll,kqueue)        占用资源少 ...

  4. 用maven打包项目成war文件

    打开pom.xml,右键选择Run As -> Maven package就可以自动打包成war文件了.

  5. PHP中的strtotime()对于31日求上个月有问题

    原文出处 <?php $date = "2012-07-31"; $date_unix = strtotime($date); $lastmonth = strtotime( ...

  6. 雷鸟(Thunderbird)收取Gmail出错,收到警告邮件

    如题,每次打开thunderbird都会收到以下提醒邮件,后来发现,只要将thunderbird中和google服务有关的插件卸载掉就可以了 We prevented the sign-in atte ...

  7. [配置文件] C#修改App.config,Web.config文件帮助类,ConfigHelper (转载)

    点击下载 ConfigHelper-sufei.rar 主要功能如下 .根据Key取Value值 .根据Key修改Value .添加新的Key ,Value键值对 .根据Key删除项 /// < ...

  8. 简单登录案例(SharedPreferences存储账户信息)&联网请求图片并下载到SD卡(文件外部存储)

    新人刚学习Android两周,写一个随笔算是对两周学习成果的巩固,不足之处欢迎各位建议和完善. 这次写的是一个简单登录案例,大概功能如下: 注册的账户信息用SharedPreferences存储: 登 ...

  9. java csv - 读写及其操作.

    今天帮同学处理数据, 主要是从1w多条记录中随机获取8k条, 然后再从8k条记录中随机获取2k条记录. 最后将2k条记录中随机分成10组,使得每组的记录都不重复. 下面将我的代码都贴上来, 好以后处理 ...

  10. 重温sql语句中的join操作

    1.join语句 Sql join语句用来合并两个或多个表中的记录.ANSI标准SQL语句中有四种JOIN:INNER,OUTER,LEFTER,RIGHT,一个表或视图也可以可以和它自身做JOIN操 ...