【poj2891】同余方程组
同余方程组
例题1:pku2891Strange Way to Express Integers
中国剩余定理求的同余方程组mod 的数是两两互素的。然而本题(一般情况,也包括两两互素的情况,所以中国剩余定理成为了“时代的眼泪”)mod的数可能不是互素,所以要转换一下再求。
P=b1(mod a1); P / a1 ==?~~~~b1
P =b2(mod a2);
P =b3(mod a3);
……
P =bn(mod an);
a1~an,b1~bn是给出来的。
解:
第一条:a1*x+b1= P
第二条:a2*y+b2= P
第一条减去第二条: a1*x - a2*y = b2-b1
设A=a1,B=-a2,K=b2-b1,得到了x(实际调用exgcd的时候不理会a2前面的负号)
如果K%d!=0,无解
否则,X=[ (x* K/d)%(B/d)+(B/d) ]%(B/d)
LCU表示最小公倍数
P= a1*X+b1+ 若干倍的LCU(a1,a2)(或者把Y=(K-AX)/B,再P=a2*Y+b2+ 若干倍的LCU(a1,a2)
所以新的b= a1*x+b1,新的a= LCU(a1,a2),
把新的b当成b1,新的a当成a1,再去和a3和b3结合,一直到最后结束,最后新的b就是X
#include<cstdio>
#include<cstring>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long LL a1,b1,a2,b2; LL ax,ay;
LL exgcd(LL a,LL b)
{
if(b==) {ax=,ay=;return a;}
LL g=exgcd(b,a%b);
LL yy=ay;
ay=ax-a/b*ay;ax=yy;
return g;
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
while(scanf("%d",&n)!=EOF)
{
scanf("%lld%lld",&a1,&b1);
bool ok=;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&a2,&b2);
if(!ok) continue;
LL a,b,c,g;
a=a1,b=a2,c=b2-b1;
g=exgcd(a,b);
if(c%g!=) {ok=;continue;}
if(b/g<) b*=-;
ax=((ax*c/g)%(b/g)+(b/g))%(b/g);
a=b1+ax*a1;
g=a1*a2/exgcd(a1,a2);
a1=g;b1=a;
}
if(!ok) printf("-1\n");
else printf("%lld\n",b1);
}
return ;
}
【poj2891】
2016-02-02 09:44:06
【poj2891】同余方程组的更多相关文章
- poj2891 Strange Way to Express Integers poj1006 Biorhythms 同余方程组
怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equ ...
- 【poj2891-Strange Way to Express Integers】拓展欧几里得-同余方程组
http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓 ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)
设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...
- 【hdu3579-Hello Kiki】拓展欧几里得-同余方程组
http://acm.hdu.edu.cn/showproblem.php?pid=3579 题解:同余方程组的裸题.注意输出是最小的正整数,不包括0. #include<cstdio> ...
- 【hdu1573-X问题】拓展欧几里得-同余方程组
http://acm.hdu.edu.cn/showproblem.php?pid=1573 求小于等于N的正整数中有多少个X满足: X mod a0 = b0 X mod a1 = b1 …… X ...
- poj3708:函数式化简+高精度进制转换+同余方程组
题目大意 给定一个函数 找出满足条件 等于 k 的最小的x m,k,d已知 其中 m,k 很大需要使用高精度存储 思路: 对 函数f(m)进行化简 ,令t=ceil( log(d,m) ) 可以得 ...
- hdu1573:数论,线性同余方程组
题目大意: 给定一个N ,m 找到小于N的 对于i=1....m,满足 x mod ai=bi 的 x 的数量. 分析 先求出 同余方程组 的最小解x0,然后 每增加lcm(a1...,am)都 ...
- POJ 1006 同余方程组
以前的做法 #include<iostream> #include<cstdio> #include<algorithm> #include<cstring& ...
随机推荐
- compareTo()
从字面意思可知这个方法就是比较的意思. 所以该方法有如下两种情况: 1.比较前后的两个字符不相同: (1) String str = "Hello World"; Stri ...
- 一个操作Sql2005数据库的类(备份,还原,分离,附加,添加删除用户等操作)(转载)
/* * 更新时间 :2011-09-01 16:06 * 更 新 人 :苏飞 */ using System; using System.Collections.Generic; using Sys ...
- hadoop_并行写操作思路
这篇文章是关于,如何修改hadoop的src以实现在client端上传大文件到HDFS的时候, 为了提高上传的效率实现将文件划分成多个块,将块并行的写入到datanode的各个block中 的初步的想 ...
- Ubuntu下Hadoop快速安装手册
http://www.linuxidc.com/Linux/2012-02/53106.htm 一.环境 Ubuntu 10.10+jdk1.6 二.下载&安装程序 1.1 Apache Ha ...
- IMPDP hangs, session wait “wait for unread message on broadcast channel”
昨晚有个朋友说加班在IMPDP数据, 在导入中途突然没有了进展,挂在那里不动了,impdp 窗口也没有报错, 一直等了1个多小时,说是impdp使用了parallel,怀疑是parallel参数出了问 ...
- 动效解析工厂:Mask 动画
转载自:http://www.cocoachina.com/ios/20160214/15250.html 前言:很多动效都是多种动画的组合,有时候你可能只是需要其中某个动画,但面对庞杂的代码库或是教 ...
- C字符串总结+字符串库实现(增,改,删,查):
<一>,字符指针&字符数组 两者形式: 字符指针:char *p; 字符数组:char str[100]; 两者区别: 字符指针p是变量: 字符数组str是常量: 访问元素方式: ...
- C++的显示转换
利用显示转换使得我们可以很容易发现它们,因为通过名字就能找到: static_cast 用于“良性”和“适度良性”转换,包括不用强制转换 const_cast 对“const”和“volatil ...
- SGU Volume 1
SGU 解题报告(持续更新中...Ctrl+A可看题目类型): SGU101.Domino(多米诺骨牌)------------★★★type:图 SGU102.Coprimes(互质的数) SGU1 ...
- jquery fancybox ie6无法显示关闭按钮
解决办法: 打开jquery.fancybox-1.3.4.css 注释掉这行就行了: .fancybox-ie6 #fancybox-close { background: transparent; ...