BZOJ 1001 狼捉兔子
Description
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦.
Input
第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入文件保证不超过10M
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
HINT
Source
这个刚看一眼以为是道网络流裸题(ISAP 跑无向图最小割),但看数据范围马上枪毙。
后来r_64大神犇教了一个平面图转对偶图求最小割的方法,时间复杂度是跑最短路的。
具体做法如下:
先将源点与汇点连接一条边,此边不与其他任何边相交,再将所有的平面surface看做一个点,平面与平面的边界看做一条边,边权即为边界的边权(之前连的除外,边权inf)。仔细想想,原图的最小割即为两个外围的大平面的最短路。
代码如下:
#include<cstring>
#include<queue>
#include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 1010
#define source 0
#define sink (2*(n-1)*(m-1)+1)
const int inf = <<;
int side[maxn*maxn*],toit[maxn*maxn*],n,m,dis[maxn*maxn*];
int cnt = ,next[maxn*maxn*],len[maxn*maxn*];
bool in[maxn*maxn*]; inline void add(int a,int b,int c)
{
toit[++cnt] = b;
next[cnt] = side[a];
side[a] = cnt;
len[cnt] = c;
} inline void ins(int a,int b,int c)
{
add(a,b,c); add(b,a,c);
} inline void build()
{
int a,i,j;
for (i = ;i <= n;++i)
{
for (j = ;j < m;++j)
{
scanf("%d",&a);
int up,down;
if (i == ) up = sink;
else up = (i-)*(m-)+j;
if (i == n) down = source;
else down = (n-)*(m-)+(i-)*(m-)+j;
ins(up,down,a);
}
}
for (i = ;i < n;++i)
for (j = ;j <= m;++j)
{
scanf("%d ",&a);
int le,ri;
if (j == ) le = source;
else le = (n-)*(m-)+(i-)*(m-)+j-;
if (j == m) ri = sink;
else ri = (i-)*(m-)+j;
ins(le,ri,a);
}
for (i = ;i < n;++i)
for (j = ;j < m;++j)
{
scanf("%d ",&a);
int le,ri;
le = (i-)*(m-)+j;
ri = (i-)*(m-)+(n-)*(m-)+j;
ins(le,ri,a);
}
} inline int spfa()
{
queue <int> team;
in[source] = true; memset(dis,0x7,sizeof(dis));
dis[source] = ; team.push(source);
int now,i;
while (!team.empty())
{
now = team.front(); team.pop();
for (i = side[now];i;i = next[i])
if (dis[toit[i]] > dis[now] + len[i])
{
dis[toit[i]] = dis[now] + len[i];
if (!in[toit[i]])
in[toit[i]] = true,team.push(toit[i]);
}
in[now] = false;
}
return dis[sink];
} int main()
{
freopen("1001.in","r",stdin);
freopen("1001.out","w",stdout);
scanf("%d %d",&n,&m);
build();
printf("%d\n",spfa());
fclose(stdin); fclose(stdout);
return ;
}
BZOJ 1001 狼捉兔子的更多相关文章
- BZOJ 1001 狼抓兔子 (最小割转化成最短路)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 27715 Solved: 7134[Submit][ ...
- BZOJ 1001 - 狼抓兔子 - [Dinic最大流][对偶图最短路]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 Description现在小朋友们最喜欢的"喜羊羊与灰太狼", ...
- bzoj 1001狼抓兔子(对偶图+最短路)最大流
推荐文章:<浅析最大最小定理在信息学竞赛中的应用>--周冬 题目 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还 ...
- BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...
- BZOJ 1001 狼抓兔子 平面图的最小割
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1001 题目大意: 见链接 思路: 求最小割,平面图的最小割等价于对偶图的最短路 直接建 ...
- bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...
- BZOJ 1001 狼抓兔子
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子 ...
- 【Bzoj】1001狼抓兔子(平面图最小割转对偶图最短路)
YEAH 题目链接 终于做对这道题啦 建图的艰辛难以言表- - 顺便说一句我队列转STL啦 狼抓兔子的地图符合平面图定义,于是将该图转成对偶图并求出对偶图的最短路即可. 这篇博客给了我极大的帮助 ...
- BZOJ 1001--[BeiJing2006]狼抓兔子(最短路&对偶图)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 29035 Solved: 7604 Descript ...
随机推荐
- Oracle 数据库用户管理
Oracle 数据库用户管理 Oracle 权限设置 一.权限分类: 系统权限:系统规定用户使用数据库的权限.(系统权限是对用户而言). 实体权限:某种权限用户对其它用户的表或视图的存取权限 ...
- Android中应用程序如何获得系统签名权限
有些库的使用条件比较苛刻,要求同一签名的程序才可以获得访问权.此时即便是在AndroidManifest.xml中添加了相应的permission,依旧会得到没有xx访问权限的问题.比如android ...
- NVMe 图解
http://www.ssdfans.com/?p=1143#rd&sukey=3997c0719f151520989740bb972a716fdb2dbab623808d16acd5075b ...
- [MySQL5.6] 一个简单的optimizer_trace示例
[MySQL5.6] 一个简单的optimizer_trace示例 前面已经介绍了如何使用和配置MySQL5.6中optimizer_trace(点击博客),本篇我们以一个相对简单的例子来跟踪op ...
- 深度剖析:CDN内容分发网络技术原理--转载
1.前言 Internet的高速发展,给人们的工作和生活带来了极大的便利,对Internet的服务品质和访问速度要求越来越高,虽然带宽不断增加,用户数量也在不断增加,受Web服务器的负荷和传输距离等因 ...
- python 内置函数和表达式
对于简单的函数来说,可以使用类似于三元运算来表示,即: lambda表达式 格式: lambda [arg1[, arg2, ... argN]]: expression 先来看看三元表达式 #普 ...
- php 5.3起弃用session_register
最近下了dedecms V5.7时,在登陆后台时,用户名和密码也没错,就是跳转不走,进不了后台管理页面,追踪了好久才发现根目录/include/userlogin.class.php中289行左右的位 ...
- Java的浮点数
为了防止无良网站的爬虫抓取文章,特此标识,转载请注明文章出处.LaplaceDemon/ShiJiaqi. http://www.cnblogs.com/shijiaqi1066/p/5160771. ...
- input框中的背景文字
<input placeholder="入库单单号" type="text" ><button>查找</button>
- (转)ie浏览器判断
常用的 JavaScript 检测浏览器为 IE 是哪个版本的代码,包括是否是最人极端厌恶的 ie6 识别与检测. var isIE=!!window.ActiveXObject; var isIE6 ...