poj4474 Scout YYF I(概率dp+矩阵快速幂)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 4100 | Accepted: 1051 |
Description
Input
Each test case contains two lines.
The First line of each test case is
N (1 ≤
N ≤ 10) and
p (0.25 ≤
p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000
Source
显然,如果k 号位有雷,那么安全通过这个雷只可能是在 k-1 号位选择走两步到 k+1 号位。因此,可以得到如下结论:在第 i 个雷的安全通过的概率就是从 a[i-1]+1 号位到 a[i]+1 号位的概率。于是,可以用 1 减去就可以求出安全通过第 i 个雷的概率,最后乘起来即可,比较悲剧的是数据很大,所以需要用到矩阵快速幂……
类似斐波那契数列,ans[i]=p*ans[i-1]+(1-p)*ans[i-2] ,构造矩阵为

#include <iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
int s[20];
double q,p;
struct node
{
double dp[2][2];//矩阵
};
node mult(node a,node b)//矩阵乘法
{
int i,j,n,k;
node temp;
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
{
temp.dp[i][j]=0;
for(k=0;k<2;k++)
temp.dp[i][j]+=a.dp[i][k]*b.dp[k][j];
}
}
return temp;
}
node cal(int N)//快速幂
{
node a,res;
a.dp[0][0]=p;
a.dp[0][1]=q;
a.dp[1][0]=1;
a.dp[1][1]=0;
res.dp[0][0]=1;
res.dp[0][1]=0;
res.dp[1][0]=0;
res.dp[1][1]=1;
while(N)
{
if(N&1)
{
res=mult(res,a);
}
a=mult(a,a);
N>>=1;
}
return res;
}
int main()
{
int i,j,n,m,max,flag;
double tempqn;
node temp,a;
while(scanf("%d%lf",&n,&p)!=EOF)
{
q=1-p;
s[0]=0;
for(i=1;i<=n;i++)
{
cin>>s[i];
}
sort(s+1,s+1+n);
for(i=1,flag=1;i<n;i++)
{
if(s[i]+1==s[i+1])
flag=0;
}
if(!flag||s[1]==1)
{
puts("0.0000000");
continue;
}
a.dp[0][0]=1;
a.dp[0][1]=0;
a.dp[1][0]=0;
a.dp[1][1]=0;
for(i=1;i<=n;i++)
{
temp=cal(s[i]-s[i-1]-2);
a=mult(temp,a);
a.dp[0][0]=a.dp[0][0]*q;
a.dp[0][1]=0;
a.dp[1][0]=0;
a.dp[1][1]=0;
}
printf("%.7f\n",a.dp[0][0]);
}
return 0;
}
poj4474 Scout YYF I(概率dp+矩阵快速幂)的更多相关文章
- POJ 3744 Scout YYF I 概率dp+矩阵快速幂
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...
- poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)
F - Scout YYF I Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ3744 Scout YYF I 概率DP+矩阵快速幂
http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...
- 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...
- Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)
题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...
- poj3744 (概率DP+矩阵快速幂)
http://poj.org/problem?id=3744 题意:在一条铺满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,10000000 ...
- poj3744 Scout YYF I[概率dp+矩阵优化]
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8598 Accepted: 2521 Descr ...
- POJ 3744 Scout YYF I (概率dp+矩阵快速幂)
题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...
- poj 3744 概率dp+矩阵快速幂
题意:在一条布满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...
随机推荐
- 十三、C# 事件
1.多播委托 2.事件 3.自定义事件 在上一章中,所有委托都只支持单一回调. 然而,一个委托变量可以引用一系列委托,在这一系列委托中,每个委托都顺序指向一个后续的委托, 从而形成了一个委托链,或 ...
- Elasticsearch学习2--Elasticsearch数据类型简介
1.Elasticsearch 是 面向文档型数据库,这意味着它存储的是整个对象或者 文档,它不但会存储它们,还会为他们建立索引,这样你就可以搜索他们了.你可以在 Elasticsearch 中索引. ...
- 不带头结点的单链表递归删除元素为X的结点
#include <iostream> using namespace std; struct Node { Node *next; int elem; }; void creatList ...
- 完美让IE兼容input placeholder属性的jquery实现
调用时直接引用jquery与下面的js就行了,相对网上的大多数例子来说,这个是比较完美的方案. /* * 球到西山沟 * http://www.cnzj5u.com * 2014/11/26 12:1 ...
- SGU 158.Commuter Train
一道简单题. 火车停的位置不是在整点就是在二分之一点,坐标*2,然后枚举火车停的位置,计算总距离即可. code: #include <iostream> #include <cma ...
- 24种设计模式--单例模式【Singleton Pattern】
这个模式是很有意思,而且比较简单,但是我还是要说因为它使用的是如此广泛,如此的有人缘,单例就是单一.独苗的意思,那什么是独一份呢?你的思维是 独一份,除此之外还有什么不能山寨的呢?我们举个比较难复制的 ...
- PHP常用代码:
1.$array=explode(separator,$string); //字符串->数组 2.$string=implode(glue,$array);//数组->字符串 3.file ...
- android:persistent属性
application PhoneApp既没有被Broadcast唤醒,也没有被其他service调用,那么是android是通过什么方式来启动PhoneApp,所以就发现了属性android:per ...
- CentOS 6.8安装Python2.7.13
查看当前系统中的 Python 版本 python --version 返回 Python 2.6.6 为正常. 检查 CentOS 版本 cat /etc/redhat-release 返回 Cen ...
- sql 使用 FOR XML PATH实现字符串拼接
sql中经常需要把多个行数据合成一行下面是利用 FOR XML PATH来实现的简单介绍. 1,把图一的转换为图二: SELECT articleID, (),tagID)+',' FROM arti ...