题目链接:BZOJ - 1875

题目分析:

  这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了。然而现在加了这个限制,建图的方式就要做一些改变。如果我们把每一条边看做点建矩阵,那么每次从一条边出发都只会到其他的边,不能仍然在这条边上“停留”,所以这就可以满足题目的限制。将每条边拆成两条单向边,比如一条编号为 4,一条编号为 5。那么 4^1=5, 5^1=4。这样只要不从第 i 条边走到 i 或 i^1 就可以了。初始的矩阵中以 A 为起点的边到达的方案数为 1 ,其余为 0。最后将终点为 B 的边的方案数累加即为答案。、

  这种将边与点灵活转化的思想十分巧妙,应注意。

代码如下:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; const int MaxN = 20 + 5, MaxM = 120 + 5, Mod = 45989; int n, m, t, A, B, TopA, TopB, Index, RT, Ans, a, b;
int EA[MaxM], EB[MaxM]; struct Edge
{
int u, v;
Edge() {}
Edge(int a, int b) {
u = a; v = b;
}
} E[MaxM]; struct Matrix
{
int x, y, Num[MaxM][MaxM];
void SetXY(int xx, int yy) {
x = xx; y = yy;
}
void Clear(int nn) {
for (int i = 0; i < x; ++i) {
for (int j = 0; j < y; ++j) {
Num[i][j] = nn;
}
}
}
} M0, MZ; Matrix Mul(Matrix A, Matrix B) {
Matrix ret;
ret.SetXY(A.x, B.y);
ret.Clear(0);
for (int i = 0; i < ret.x; ++i) {
for (int j = 0; j < ret.y; ++j) {
for (int k = 0; k < A.y; ++k) {
ret.Num[i][j] += A.Num[i][k] * B.Num[k][j];
ret.Num[i][j] %= Mod;
}
}
}
return ret;
} Matrix Pow(Matrix A, int b) {
Matrix ret, f;
f = A;
ret.SetXY(f.x, f.y);
for (int i = 0; i <= ret.x; ++i) ret.Num[i][i] = 1;
while (b) {
if (b & 1) ret = Mul(ret, f);
b >>= 1;
f = Mul(f, f);
}
return ret;
} int main()
{
scanf("%d%d%d%d%d", &n, &m, &t, &A, &B);
Index = -1;
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &a, &b);
E[++Index] = Edge(a, b);
E[++Index] = Edge(b, a);
}
MZ.SetXY(m * 2, m * 2);
MZ.Clear(0);
TopA = TopB = 0;
for (int i = 0; i <= Index; ++i) {
if (E[i].u == A) EA[++TopA] = i;
if (E[i].v == B) EB[++TopB] = i;
for (int j = 0; j <= Index; ++j) {
if (i != j && i != (j ^ 1) && E[i].v == E[j].u)
MZ.Num[i][j] = 1;
}
}
M0.SetXY(1, m * 2);
M0.Clear(0);
for (int i = 1; i <= TopA; ++i) M0.Num[0][EA[i]] = 1;
MZ = Pow(MZ, t - 1);
M0 = Mul(M0, MZ);
Ans = 0;
for (int i = 1; i <= TopB; ++i) {
Ans += M0.Num[0][EB[i]];
Ans %= Mod;
}
printf("%d\n", Ans);
return 0;
}

  

[BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】的更多相关文章

  1. sdoi 2009 HH去散步 矩阵乘

    如果没有题里的"不会立刻沿着刚刚走来的路走回"限制,那么直接矩乘计算k步的方案数 但加了这个限制,就不能以点来矩乘了,考虑边数<=60,如果以边建邻接矩阵呢?? 先拆边,再把 ...

  2. bzoj 1875: [SDOI2009]HH去散步 -- 矩阵乘法

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走, ...

  3. 【47.40%】【BZOJ 1875】[SDOI2009]HH去散步

    Time Limit: 20 Sec  Memory Limit: 64 MB Submit: 1363  Solved: 646 [Submit][Status][Discuss] Descript ...

  4. 【bzoj1875】[SDOI2009]HH去散步 矩阵乘法

    题目描述 一张N个点M条边的无向图,从A走到B,要求:每一次不能立刻沿着上一次的边的反方向返回.求方案数. 输入 第一行:五个整数N,M,t,A,B. N表示学校里的路口的个数 M表示学校里的路的条数 ...

  5. [SDOI 2009]HH去散步

    Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...

  6. [SDOI2009] HH去散步 (矩阵乘法)

    link $solution:$ 将边化为点后重新建矩阵,跑$T-1$幂即可(因为跑的是新边). 最后直接找与$x,y$所相连的边即可. #include<iostream> #inclu ...

  7. 洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]

    题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走 ...

  8. bzoj1875 [SDOI2009]HH去散步 矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1875 题解 如果没有这个"不能立刻沿着刚刚走来的路走回",那么这个题就是一 ...

  9. 【BZOJ】1875: [SDOI2009]HH去散步 矩阵快速幂

    [题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵 ...

随机推荐

  1. eclipse GWT开发环境的离线布置方法

    安装方法http://blog.csdn.net/u011029071/article/details/10143841 用eclipse自动更新安装失败N次,还是得手动来 以Google Plugi ...

  2. 使用strace追踪多个进程

    http://www.ttlsa.com/tools/use-strace-to-track-multiple-processes/  strace是Linux环境下的一款程序调试工具,用来监察一个应 ...

  3. objective-c 中的关联介绍

    objective-c 中的关联介绍 转载请注明CSDN博客上的出处: http://blog.csdn.net/daiyibo123/article/details/46471993 如何设置关联 ...

  4. HTML特效代码大全

    1)贴图:<img src="图片地址">2)加入连接:<a href="所要连接的相关地址">写上你想写的字</a>1)贴 ...

  5. 点击其它地方隐藏div/事件冒泡/sweet-alert阻止冒泡

    点击document时把div隐藏,但点击div时阻止点击事件冒泡到document,从而实现“点击文档其它地方隐藏div,点击div本身不隐藏”.js代码如下:$("#div") ...

  6. MVC ViewEngine视图引擎解读及autofac的IOC运用实践

    MVC 三大特色  Model.View.Control ,这次咱们讲视图引擎ViewEngine 1.首先看看IViewEngine接口的定义 namespace System.Web.Mvc { ...

  7. Array,ArrayList 和 List<T>的选择和性能比较.

    Array Class Provides methods for creating, manipulating, searching, and sorting arrays, thereby serv ...

  8. linux常用命令之ln

    ln是linux中又一个非常重要命令,它的功能是为某一个文件在另外一个位置建立一个同不的链接,这个命令最常用的参数是-s,具体用法是:ln –s 源文件 目标文件. 当我们需要在不同的目录,用到相同的 ...

  9. Alljoyn 概述(3)

    开发工具 • scons:一个 Python写的自动化构建工具,是对 gnu make 改进的替代工具 • D-Feet:一个D-Bus调试工具 • C++ Code Generator Tool ( ...

  10. const和volatile的区别

    一.关键字const有什么含意? 只要一听到说:“const意味着常数”,就知道我正在和一个业余者打交道.去年Dan Saks已经在他的文章里完全概括了const的所有用法,因此ESP(译者:Embe ...