Black Box
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10658   Accepted: 4390

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box;

GET: increase i by 1 and give an i-minimum out of all integers
containing in the Black Box. Keep in mind that i-minimum is a number
located at i-th place after Black Box elements sorting by non-
descending.

Let us examine a possible sequence of 11 transactions:

Example 1

N Transaction i Black Box contents after transaction Answer

(elements are arranged by non-descending)

1 ADD(3) 0 3

2 GET 1 3 3

3 ADD(1) 1 1, 3

4 GET 2 1, 3 3

5 ADD(-4) 2 -4, 1, 3

6 ADD(2) 2 -4, 1, 2, 3

7 ADD(8) 2 -4, 1, 2, 3, 8

8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8

9 GET 3 -1000, -4, 1, 2, 3, 8 1

10 GET 4 -1000, -4, 1, 2, 3, 8 2

11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2
  水题瞬秒……
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=;
int a[maxn],t[maxn],n,m;
priority_queue<int>A;
priority_queue<int,vector<int>,greater<int> >B;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)scanf("%d",&t[i]);
for(int i=,p=;i<=m;i++){
while(p!=t[i])B.push(a[++p]);
while(A.size()<1ul*i){
A.push(B.top());
B.pop();
}
while(B.size()&&A.top()>B.top()){
A.push(B.top());
B.push(A.top());
A.pop();B.pop();
}
printf("%d\n",A.top());
}
return ;
}

数据结构(堆):POJ 1442 Black Box的更多相关文章

  1. POJ 1442 Black Box treap求区间第k大

    题目来源:POJ 1442 Black Box 题意:输入xi 输出前xi个数的第i大的数 思路:试了下自己的treap模版 #include <cstdio> #include < ...

  2. POJ 1442 Black Box(优先队列)

    题目地址:POJ 1442 这题是用了两个优先队列,当中一个是较大优先.还有一个是较小优先. 让较大优先的队列保持k个.每次输出较大优先队列的队头. 每次取出一个数之后,都要先进行推断,假设这个数比較 ...

  3. poj 1442 Black Box(堆 优先队列)

    题目:http://poj.org/problem?id=1442 题意:n,m,分别是a数组,u数组的个数,u[i]w为几,就加到a几,然后输出第i 小的 刚开始用了一个小顶堆,超时,后来看了看别人 ...

  4. POJ 1442 Black Box 堆

    题目: http://poj.org/problem?id=1442 开始用二叉排序树写的,TLE了,改成优先队列,过了.. 两个版本都贴一下吧,赚稿费.. #include <stdio.h& ...

  5. [ACM] POJ 1442 Black Box (堆,优先队列)

    Black Box Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7099   Accepted: 2888 Descrip ...

  6. poj 1442 Black Box(优先队列&Treap)

    题目链接:http://poj.org/problem?id=1442 思路分析: <1>维护一个最小堆与最大堆,最大堆中存储最小的K个数,其余存储在最小堆中; <2>使用Tr ...

  7. POJ 1442 Black Box

    第k大数维护,我推荐Treap..谁用谁知道....                                                           Black Box Time ...

  8. POJ 1442 Black Box -优先队列

    优先队列..刚开始用蠢办法,经过一个vector容器中转,这么一来一回这么多趟,肯定超时啊. 超时代码如下: #include <iostream> #include <cstdio ...

  9. 优先队列 || POJ 1442 Black Box

    给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...

随机推荐

  1. Python的Ftplib问题:UnicodeEncodeError: 'latin-1' codec can't encode characters的解决方法

    ftplib中有一个方法是cwd,用来切换目录,需要传入一个dirname,经过个人测试,该dirname不能含有汉字,会抛出:UnicodeEncodeError: 'latin-1' codec ...

  2. jQuery Capty 图片标题插件

    jQuery Capty是可以为图片添加漂亮的字幕的插件 文件包含: <link type="text/css" rel="stylesheet" hre ...

  3. Quartz Features

    Runtime Environments Quartz can run embedded within another free standing application Quartz can be ...

  4. 屏蔽Codeforces做题时的Problem tags提示

    当在Codeforces上做题的时,有时会无意撇到右侧的Problem tags边栏,但是原本并不希望能够看到它. 能否把它屏蔽了呢?答案是显然的,我们只需要加一段很短的CSS即可. span.tag ...

  5. Arcgis 9.3升级Arcgis10.1需要注重的一点

    在项目启动时绑定一个证书文件: 在 Global.asax里面添加 void Application_Start(object sender, EventArgs e) { // Code that ...

  6. string.Join和Reverse的简单使用示例

    String.Join 方法 (String, String[]) 串联字符串数组的所有元素,其中在每个元素之间使用指定的分隔符. 例如,如果 separator 为“,”且 value 的元素为“a ...

  7. poj1828

    poj1828 [问题的描述]是这样的:程序猿的近亲 猴子(......)最近在进行王位争夺站. 题中使用二维坐标轴上的点(x,y)来代表猴子所占有的位置, 每只猴子占有一个坐标点.并且一个坐标点上面 ...

  8. 设置 textField.placeholder的颜色和大小

    textField.placeholder = @"请输入手机号码"; [textField setValue:[UIColor blue] forKeyPath:@"_ ...

  9. IOS 生成设备唯一标识

    前言 iOS设备5.0以上放弃使用[[UIDevice currentDevice] uniqueIdentifier]来获得设备唯一ID iOS设备私有方法禁止用户获取和使用IMEI 需求 需要一个 ...

  10. 十、C# 异常处理

    1.多异常类型 2.捕捉异常 3.常规catch块 4.异常处理的指导原则 5.定义自定义异常   1.多异常类型 代码要引发任何异常,只需为要引发的异常实例实例附加关键字throw作为前缀.具体选择 ...