Black Box
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10658   Accepted: 4390

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box;

GET: increase i by 1 and give an i-minimum out of all integers
containing in the Black Box. Keep in mind that i-minimum is a number
located at i-th place after Black Box elements sorting by non-
descending.

Let us examine a possible sequence of 11 transactions:

Example 1

N Transaction i Black Box contents after transaction Answer

(elements are arranged by non-descending)

1 ADD(3) 0 3

2 GET 1 3 3

3 ADD(1) 1 1, 3

4 GET 2 1, 3 3

5 ADD(-4) 2 -4, 1, 3

6 ADD(2) 2 -4, 1, 2, 3

7 ADD(8) 2 -4, 1, 2, 3, 8

8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8

9 GET 3 -1000, -4, 1, 2, 3, 8 1

10 GET 4 -1000, -4, 1, 2, 3, 8 2

11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2
  水题瞬秒……
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int maxn=;
int a[maxn],t[maxn],n,m;
priority_queue<int>A;
priority_queue<int,vector<int>,greater<int> >B;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++)scanf("%d",&t[i]);
for(int i=,p=;i<=m;i++){
while(p!=t[i])B.push(a[++p]);
while(A.size()<1ul*i){
A.push(B.top());
B.pop();
}
while(B.size()&&A.top()>B.top()){
A.push(B.top());
B.push(A.top());
A.pop();B.pop();
}
printf("%d\n",A.top());
}
return ;
}

数据结构(堆):POJ 1442 Black Box的更多相关文章

  1. POJ 1442 Black Box treap求区间第k大

    题目来源:POJ 1442 Black Box 题意:输入xi 输出前xi个数的第i大的数 思路:试了下自己的treap模版 #include <cstdio> #include < ...

  2. POJ 1442 Black Box(优先队列)

    题目地址:POJ 1442 这题是用了两个优先队列,当中一个是较大优先.还有一个是较小优先. 让较大优先的队列保持k个.每次输出较大优先队列的队头. 每次取出一个数之后,都要先进行推断,假设这个数比較 ...

  3. poj 1442 Black Box(堆 优先队列)

    题目:http://poj.org/problem?id=1442 题意:n,m,分别是a数组,u数组的个数,u[i]w为几,就加到a几,然后输出第i 小的 刚开始用了一个小顶堆,超时,后来看了看别人 ...

  4. POJ 1442 Black Box 堆

    题目: http://poj.org/problem?id=1442 开始用二叉排序树写的,TLE了,改成优先队列,过了.. 两个版本都贴一下吧,赚稿费.. #include <stdio.h& ...

  5. [ACM] POJ 1442 Black Box (堆,优先队列)

    Black Box Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7099   Accepted: 2888 Descrip ...

  6. poj 1442 Black Box(优先队列&Treap)

    题目链接:http://poj.org/problem?id=1442 思路分析: <1>维护一个最小堆与最大堆,最大堆中存储最小的K个数,其余存储在最小堆中; <2>使用Tr ...

  7. POJ 1442 Black Box

    第k大数维护,我推荐Treap..谁用谁知道....                                                           Black Box Time ...

  8. POJ 1442 Black Box -优先队列

    优先队列..刚开始用蠢办法,经过一个vector容器中转,这么一来一回这么多趟,肯定超时啊. 超时代码如下: #include <iostream> #include <cstdio ...

  9. 优先队列 || POJ 1442 Black Box

    给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...

随机推荐

  1. 咱也玩玩Wordpress

    博客暂时转移到了 ->  www.zhyfzy.ga 域名改成.com啦 -> www.zhyfzy.com

  2. 各大浏览器CSS Hack收集

    各大浏览器CSS Hack收集  >>>>>>>>>>>>>>>>>>>>> ...

  3. Android清单文件AndroidMenifest.xml

    1.AndroidMenifes.xml清单文主要结构件结构 所谓主要结构就是每一个清单文件中都必不可少的结构主要是下面三层 第一层.menifest 第二层.application,use-sdk ...

  4. listView中的button控件获取item的索引

    在listview中的listitem设置事件响应,如果listitem中有button控件,这时候listitem就不会捕获到点击事件,而默认的是listitem中的button会捕获点击事件.那么 ...

  5. 利用抽象、多态实现无反射的绿色环保ORM框架

    最近一直在忙新公司的基础库建设,对系统架构.开发框架及快速开发平台的设计实施都积累了一定的实践经验. 一般的中小型的软件开发公司,如果按照技术储备来衡量软件项目的技术含量的评定依据是可行的.但如果光是 ...

  6. How to Make LastPass Even More Secure with Google Authenticator

    Google Authenticator LastPass supports Google Authenticator, which is officially available as an app ...

  7. Java 获取字符串中第N次出现的字符位置

    public static int getCharacterPosition(String string){    //这里是获取"/"符号的位置    Matcher slash ...

  8. Objective-C 实例方法可见度,方法

    一 实例方法可见度,方法 1.实例变量的可见度 可见度                                                                       特点 ...

  9. wpf 窗体中显示当前系统时间

    先看一下效果: 这其实是我放置了两个TextBlock,上面显示当前的日期,下面显示时间. 接下来展示一下代码: 在XAML中: <StackPanel Width="205" ...

  10. C#DateTimePicker设置自定义格式

    摘自Microsoft TechNet DateTimePicker.CustomFormat 属性 包含日期和时间分隔符的显示字符串文字或格式字符串,必须在子字符串中使用转义符. 例如,若要显示将日 ...