Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 8476   Accepted: 2554

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

题意:求解一个数x使得 x%8 = 7,x%11 = 9;
   若x存在,输出最小整数解,否则输出-1;
思路:这不是简单的中国剩余定理问题,因为输入的ai不一定两两互质,而中国剩余定理的条件是除数两两互质;
   这是一般的模线性方程组,对于
    X mod m1=r1
    X mod m2=r2
    ...
    ...
    ...
    X mod mn=rn
首先,我们看两个式子的情况
X mod m1=r1……………………………………………………………(1)
X mod m2=r2……………………………………………………………(2)
则有 
X=m1*k1+r1………………………………………………………………(*)
X=m2*k2+r2
那么 m1*k1+r1=m2*k2+r2
整理,得
m1*k1-m2*k2=r2-r1
令(a,b,x,y,m)=(m1,m2,k1,k2,r2-r1),原式变成
ax+by=m
熟悉吧? 此时,因为GCD(a,b)=1不一定成立,GCD(a,b) | m 也就不一定成立。所以应该先判 若 GCD(a,b) | m 不成立,则!!!方程无解!!!。
否则,继续往下。 解出(x,y),将k1=x反代回(*),得到X。
于是X就是这两个方程的一个特解,通解就是 X'=X+k*LCM(m1,m2)
这个式子再一变形,得 X' mod LCM(m1,m2)=X
这个方程一出来,说明我们实现了(1)(2)两个方程的合并。
令 M=LCM(m1,m2),R=r2-r1
就可将合并后的方程记为 X mod M = R。 然后,扩展到n个方程。
用合并后的方程再来和其他的方程按这样的方式进行合并,最后就能只剩下一个方程 X mod M=R,其中 M=LCM(m1,m2,...,mn)。
那么,X便是原模线性方程组的一个特解,通解为 X'=X+k*M。 如果,要得到X的最小正整数解,就还是原来那个方法: X%=M;
if (X<0) X+=M;
 #include<stdio.h>
#include<string.h>
long long k;
long long M;
long long extend_gcd(long long a,long long b,long long &x,long long &y)
{
if(b == )
{
x = ;
y = ;
return a;
}
else
{
long long r = extend_gcd(b,a%b,x,y);
long long t = x;
x = y;
y = t-a/b*y;
return r;
}
} int main()
{
long long a1,m1,a2,m2,x,y,i,d;
while(scanf("%lld",&k)!= EOF)
{
bool flag = true;
scanf("%lld %lld",&m1,&a1);
for(i = ; i < k; i++)
{
scanf("%lld %lld",&m2,&a2); d = extend_gcd(m1,m2,x,y); if((a2-a1)%d != )
flag = false; long long t = m2/d;
x *= (a2-a1)/d;
x = (x%t + t)%t;
a1 = x*m1+a1;
m1 = m1*m2/d;
a1 = (a1%m1+m1)%m1;
}
if(flag == true)
printf("%lld\n",a1);
else printf("-1\n"); }
return ;
}

Strange Way to Express Integers (一般模线性方程组)的更多相关文章

  1. POJ2891 - Strange Way to Express Integers(模线性方程组)

    题目大意 求最小整数x,满足x≡a[i](mod m[i])(没有保证所有m[i]两两互质) 题解 中国剩余定理显然不行....只能用方程组两两合并的方法求出最终的解,刘汝佳黑书P230有讲~~具体证 ...

  2. POJ2891——Strange Way to Express Integers(模线性方程组)

    Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...

  3. 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)

    F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format: ...

  4. 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)

    0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...

  5. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  6. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  7. Strange Way to Express Integers(中国剩余定理+不互质)

    Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...

  8. 一本通1635【例 5】Strange Way to Express Integers

    1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己 ...

  9. POJ2891 Strange Way to Express Integers

    题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...

  10. poj 2981 Strange Way to Express Integers (中国剩余定理不互质)

    http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 13 ...

随机推荐

  1. Realm Configuration HOW-TO--官方

    来源:https://secure.gettinglegaldone.com/docs/realm-howto.html Quick Start This document describes how ...

  2. camera理论基础和工作原理

    写在前面的话,本文是因为工作中需要编写摄像头程序,因为之前没有做过这类产品,所以网上搜索的资料,先整理如下,主要参考文章如下,如果有侵权,请联系我:另外,转载请注明出处.本文不一定全部正确,如果发现错 ...

  3. 样式单位之px、em、rem

    最近在看bootstrap.css的时候看到很多单位都用到rem而不是熟系的px.经学习得知: 1.px精确的单位: 2.em为相对单位(相对父级元素) 3.rem为相对单位(相对根元素 html)

  4. 用Java发送邮件

    要用Java发送邮件,除过JDK本身的jar包之外,还需要两个额外的jar包:JavaMail和JAF.当然,如果你使用的JavaEE的JDK,那就不用单独去网上下载了,因为JavaEE的JDK中已经 ...

  5. jsp-文件的上传(转).

    该程序的主要代码,我引用网友的,并做了一些改进.上这个帖子的原因之一,是为了修正之前自己的一些误解. 概述: 一些网友,包括我,也曾经试图通过 input type 为 file的控件,获取其文件的完 ...

  6. eclipse中修改内存

  7. nim

    上帝创造了一个n*m棋盘,每一个格子都只有可能是黑色或者白色的. 亚当和夏娃在玩一个游戏,每次寻找边长为x的正方形,其中每个格子必须为黑色,然后将这些格子染白. 如果谁不能操作了,那么那个人就输了. ...

  8. 封装Timer

    System.Timers.Timer,System.Timers.Timer在使用的过程中需要: 1.构造函数不同,构造函数可以什么事情也不做,也可以传入响应间隔时间:System.Timers.T ...

  9. Servlet监听器类型

    ------------------------serlvet对象监听器------------------------------------------- request监听器(ServletRe ...

  10. C#遍历所有的Textbox控件并赋值为String.Empty

    foreach (Control control in this.Controls) { if (control.GetType().Name.Equals("TextBox")) ...