LibLinear(SVM包)使用说明之(三)实践
LibLinear(SVM包)使用说明之(三)实践
我们在UFLDL的教程中,Exercise: Convolution and Pooling这一章节,已经得到了cnnPooledFeatures.mat特征。在该练习中,我们使用的是softmax分类器来分类的。在这里我们修改为用SVM来替代softmax分类器。SVM由Liblinear软件包来提供。这里是四分类问题,所以Liblinear会根据我们传入的训练样本训练四个二分类器,以实现四分类。以前由softmax分类器得到的准确率是80.406%。在这里换成Liblinear后,准确率变为80.75%。在这里差别不是很大。
在本文的例子中,我们增加了scale和Cross Validation,Cross Validation是用来选择一个最好的参数C的(不知道自己这两个步骤有没有正确,如有错误,还望大家提醒,谢谢)。
具体的代码如下:
- %// Classification by LibLinear
- %// LibLinear: http://www.csie.ntu.edu.tw/~cjlin/liblinear/
- %// Author : zouxy
- %// Date : 2013-9-2
- %// HomePage : http://blog.csdn.net/zouxy09
- %// Email : zouxy09@qq.com
- clear; clc;
- %%% step1: load data
- fprintf(1,'step1: Load data...\n');
- % pooledFeaturesTrain大小为400*2000*3*3
- % pooledFeaturesTest大小为400*3200*3*3
- % 第一维是特征个数,也就是特征图个数,第二维是样本个数,第三维是特征图的宽,
- % 第四维是特征图的高
- load cnnPooledFeatures.mat;
- load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels
- load stlTestSubset.mat % loads numTestImages, testImages, testLabels
- % B = permute(A,order) 按照向量order指定的顺序重排A的各维
- train_X = permute(pooledFeaturesTrain, [1 3 4 2]);
- % 将每个样本的特征拉成一个列向量,每个样本一个列,矩阵大小为3600*2000
- train_X = reshape(train_X, numel(pooledFeaturesTrain) / numTrainImages, numTrainImages);
- train_Y = trainLabels; % 2000*1
- test_X = permute(pooledFeaturesTest, [1 3 4 2]);
- test_X = reshape(test_X, numel(pooledFeaturesTest) / numTestImages, numTestImages);
- test_Y = testLabels;
- % release some memory
- clear trainImages testImages pooledFeaturesTrain pooledFeaturesTest;
- %%% step2: scale the data
- fprintf(1,'step2: Scale data...\n');
- % Using the same scaling factors for training and testing sets,
- % we obtain much better accuracy. Note: scale each attribute(feature), not sample
- % scale to [0 1]
- % when a is a vector, b = (a - min(a)) .* (upper - lower) ./ (max(a)-min(a)) + lower
- lower = 0;
- upper = 1.0;
- train_X = train_X';
- X_max = max(train_X);
- X_min = min(train_X);
- train_X = (train_X - repmat(X_min, size(train_X, 1), 1)) .* (upper - lower) ...
- ./ repmat((X_max - X_min), size(train_X, 1), 1) + lower;
- test_X = test_X';
- test_X = (test_X - repmat(X_min, size(test_X, 1), 1)) .* (upper - lower) ...
- ./ repmat((X_max - X_min), size(test_X, 1), 1) + lower;
- % Note: before scale the accuracy is 80.4688%, after scale it turns to 80.1875%,
- % and took more time. So is that my scale operation wrong or other reasons?
- % After adding bias, Accuracy = 80.75% (2584/3200)
- %%% step3: Cross Validation for choosing parameter
- fprintf(1,'step3: Cross Validation for choosing parameter c...\n');
- % the larger c is, more time should be costed
- c = [2^-6 2^-5 2^-4 2^-3 2^-2 2^-1 2^0 2^1 2^2 2^3];
- max_acc = 0;
- tic;
- for i = 1 : size(c, 2)
- option = ['-B 1 -c ' num2str(c(i)) ' -v 5 -q'];
- fprintf(1,'Stage: %d/%d: c = %d, ', i, size(c, 2), c(i));
- accuracy = train(train_Y, sparse(train_X), option);
- if accuracy > max_acc
- max_acc = accuracy;
- best_c = i;
- end
- end
- fprintf(1,'The best c is c = %d.\n', c(best_c));
- toc;
- %%% step4: train the model
- fprintf(1,'step4: Training...\n');
- tic;
- option = ['-c ' num2str(c(best_c)) ' -B 1 -e 0.001'];
- model = train(train_Y, sparse(train_X), option);
- toc;
- %%% step5: test the model
- fprintf(1,'step5: Testing...\n');
- tic;
- [predict_label, accuracy, dec_values] = predict(test_Y, sparse(test_X), model);
- toc;
LibLinear(SVM包)使用说明之(三)实践的更多相关文章
- LibLinear(SVM包)使用说明之(一)README
转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.c ...
- LibLinear(SVM包)使用说明之(二)MATLAB接口
LibLinear(SVM包)使用说明之(二)MATLAB接口 LibLinear(SVM包)使用说明之(二)MATLAB接口 zouxy09@qq.com http://blog.csdn.net/ ...
- LibLinear(SVM包)的MATLAB安装
LibLinear(SVM包)的MATLAB安装 1 LIBSVM介绍 LIBSVM是众所周知的支持向量机分类工具包(一些支持向量机(SVM)的开源代码库的链接及其简介),运用方便简单,其中的核函数( ...
- Maven中解决jar包冲突的三种方式
首先我们在idea中创建一个maven工程,我们只关注pom.xml以及External Libraries中导入的jar包 导入spring-beans.jar <dependency> ...
- 使用 tcpdump 抓包分析 TCP 三次握手、四次挥手与 TCP 状态转移
目录 文章目录 目录 前文列表 TCP 协议 图示三次握手与四次挥手 抓包结果 抓包分析 TCP 三次握手 数据传输 四次挥手 TCP 端口状态转移 状态转移 前文列表 <常用 tcpdump ...
- Wireshark抓包分析TCP“三次握手,四次挥手”
1.目的 客户端与服务器之间建立TCP/IP连接,我们知道是通过三次握手,四次挥手实现的,但是很多地方对这个知识的描述仅限于理论层面,这次我们通过网络抓包的方式来看一下实际的TCP/IP传输过程. 2 ...
- 用wireshark抓包分析TCP三次握手、四次挥手以及TCP实现可靠传输的机制
关于TCP三次握手和四次挥手大家都在<计算机网络>课程里学过,还记得当时高超老师耐心地讲解.大学里我遇到的最好的老师大概就是这位了,虽然他只给我讲过<java程序设计>和< ...
- 基于IPv6的数据包分析(第三组)
一.实验拓扑 二.配置过程 本处提供R1.R2.R4的详细配置过程(包含静态路由的配置) 1) R1: R1(config)#int e1/0 R1(config-if)#ipv6 addr ...
- Java网络编程学习A轮_02_抓包分析TCP三次握手过程
参考资料: https://huoding.com/2013/11/21/299 https://hpbn.co/building-blocks-of-tcp/#three-way-handshake ...
随机推荐
- J2EE综合:如何处理大数据量的查询
在实际的任何一个系统中,查询都是必不可少的一个功能,而查询设计的好坏又影响到系统的响应时间和性能这两个要害指标,尤其是当数据量变得越来越大时,于是如何处理大数据量的查询成了每个系统架构设计时都必须面对 ...
- hdu 1040 As Easy As A+B
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Visual Studio 2015中的常用调试技巧分享
.NET 技术交流群:337901356 欢迎您的加入! 为什么要学习调试? 调试(Debug)是作为一个程序员必须要学会的东西,学会调试可以极大的提高开发效率,排错时间,很多人不喜欢调试,但我认为这 ...
- Smarty中一些标签的使用
Smarty中的标签和php中的标签不一样 foreach标签{foreach from=$goods(变量名) key='键,不带$' item='值,不带$'}中间的显示内容{/foreach ...
- spark向量、矩阵类型
先来个普通的数组: scala> var arr=Array(1.0,2,3,4) arr: Array[Double] = Array(1.0, 2.0, 3.0, 4.0) 可以将它转换成一 ...
- android loadlibrary 更改libPath 路径,指定路径加载.so
http://www.jianshu.com/p/f751be55d1fb 字数549 阅读177 评论0 喜欢0 需求很简单 ,就是加载指定文件夹下的.so. 原因:android在程序运行的状态下 ...
- ligerUI调用$.ligerDialog.open弹出窗口关闭
1:调用父窗口某一个文件框,获取焦点, parent.window.document.getElementById("roleName").focus(); 2:关闭父窗口 par ...
- dapper关联关系查询小测试
测试实体类(表结构) public class User { public int user_id { get; set; } public string user_name { get; set; ...
- 如何在浏览器网页中实现java小应用程序的功能
我们知道,java语言的运用就是面向对象实现功能,和c不同,java语言对于程序员来说,运用起来更为简便. 小应用程序与应用程序不同,小应用程序只能在与Java兼容的容器中运行,可以嵌入在HTML网页 ...
- Java编程思想读书笔记--第14章类型信息
7.动态代理 代理是基本的设计模式之一,它是你为了提供额外的或不同的操作,而插入的用来代替“实际”对象的对象.这些操作通常涉及与“实际”对象的通信,因此代理通常充当着中间人的角色. 什么是代理模式? ...