Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

还是01分数规划问题,枚举l,然后求一下最小生成树,嗯,还是很裸啦,然后借机学了一下prim,一直只会Kru(╮(╯▽╰)╭)。

 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#define inf 1000000000
#define eqs 1e-7
const int N = + ;
using namespace std ;
int n ;
struct id
{
int x , y , h ;
} vill[N] ;
double edge[N][N] , cost[N] ;
int near[N] ; double ffabs( double a )
{
if( a < ) return -a ; return a ;
} double dis( int a , int b )
{ return sqrt(1.0 * (vill[a].x - vill[b].x) * (vill[a].x - vill[b].x) + 1.0 * (vill[a].y - vill[b].y) * (vill[a].y - vill[b].y)); } double prim( int sc , double l )
{
double Cost = , len = ;
for( int i = ; i <= n ; ++i )
{
near[i] = sc ;
cost[i] = abs( vill[sc].h - vill[i].h ) - edge[sc][i] * l ;
}
near[sc] = - ;
for( int i = ; i < n ; ++i )
{
double mi = inf ;
int v = - ;
for( int j = ; j <= n ; ++j )
if( near[j] != - && cost[j] < mi )
{
v = j ;
mi = cost[j] ;
}
if( v != - )
{
Cost += abs( vill[near[v]].h - vill[v].h ) ;
len += edge[near[v]][v] ;
near[v] = - ;
for( int j = ; j <= n ; ++j )
{
double tmp = abs( vill[v].h - vill[j].h ) - edge[v][j] * l ;
if( near[j] != - && tmp < cost[j] )
{
cost[j] = tmp ;
near[j] = v ;
}
}
}
}
return Cost / len ;
} void Init( )
{ for( int x = ; x <= n ; ++x )
scanf( "%d%d%d" , &vill[x].x , &vill[x].y , &vill[x].h ) ;
for( int x = ; x <= n ; ++x )
for( int y = ; y <= n ; ++y )
edge[x][y] = dis( x , y ) ;
} void Solve( )
{
double ans = , tmp ;
while( )
{
tmp = prim( , ans ) ;
if( fabs( ans - tmp ) < eqs ) break ;
// printf( "%.3lf\n" , tmp ) ;
ans = tmp ;
}
printf( "%.3f\n" , tmp ) ;
} int main( )
{
while( ~scanf( "%d" , &n ) && n )
{
Init( ) ;
Solve( ) ;
}
return ;
}

POJ 2728 Desert King的更多相关文章

  1. poj 2728 Desert King (最小比例生成树)

    http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  2. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  3. POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25310   Accepted: 7022 Desc ...

  4. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  5. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  6. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

  7. POJ 2728 Desert King | 01分数规划

    题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...

  8. 【POJ 2728 Desert King】

    Time Limit: 3000MSMemory Limit: 65536K Total Submissions: 27109Accepted: 7527 Description David the ...

  9. POJ 2728 Desert King:最优比率生成树

    题目链接:http://poj.org/problem?id=2728 题意: 给你n个点(x,y,z),让你求一棵生成树,使得 k = ∑ |z[i]-z[j]| / ∑ dis(i,j)最小. | ...

随机推荐

  1. Automotive Security的一些资料和心得(8):Hardware Security Module (HSM)

    1. Introduction - 保护软件的安全性措施,作为值得信赖的安全锚,- 安全地生成,存储和处理安全性关键材料屏蔽任何潜在的恶意软件,?- 通过运用有效的限制硬件篡改攻击的可能性篡改保护措施 ...

  2. JavaScript typeof function()的注意事项

    首先,上一段代码: var f = function g() { return 23; }; console.log(typeof g); //输出undefined //console.log(ty ...

  3. 再eclipse的javaweb项目中添加JQuery文件时jquery-2.1.4.min.js报错

    解决方法: eclipse导入jquery包后报错,下面有个不错的解决方法,需要的朋友可以参考下 eclipse导入jquery包后报错,处理步骤如下: 1.打开项目.project文件,去掉如下内容 ...

  4. sublime text 2 前端编码神器-快捷键与使用技巧介绍

    介绍网址:http://www.xuanfengge.com/sublime-text-2-artifact.html

  5. ZOJ 3490 String Successor

    点我看题目 题意 : 给你一个字符串,让你按照给定规则进行处理. 如果字符串里有字母或者是数字就忽略非字符数字,如果没有,就让最右边的那个字符+1. 增量都是从最右边的字母或者数字开始的. 增加一个数 ...

  6. 保护模式下GDTR,LDTR,全局描述符表,局部描述符表和选择器的关系

    这张图要注意:右边两个0-15,其中上面的是LDTR,  下面的是选择子. 图下第五个标线,是两个线交叉的,实际上第五个线是指向右边水平的那个线. 没有箭头的两组线分别表示GDT的区间,LDT的区间 ...

  7. JavaScript 弹出窗体点击按钮返回选择数据的实现

    首先是父页面的代码: <head runat="server"> <title>无标题页</title> <%-- <script ...

  8. MyEclipse中文乱码,编码格式设置,文件编码格式 总结

    一.设置新建常见文件的默认编码格式,也就是文件保存的格式.在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致, ...

  9. 4. 在Inspector面板中显示类中变量+ 拓展编辑器

    1. C#脚本如下: using UnityEngine; using System.Collections; public class MyTest : MonoBehaviour { ; ; [S ...

  10. BGP详解

    相信各位站长在托管服务器或者选择虚拟主机的时候,提供商都会说他们的机房是双线机房,保证你的站点访问速度,那么这里所谓的双线机房到底是何意思,它又为何能提升站点的访问速度呢? 一遍小型机房的所谓双线路其 ...