http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094

ZOJ Problem Set - 1094

Matrix Chain Multiplication

--------------------------------------------------------------------------------

Time Limit:  2 Seconds      Memory Limit:  65536 KB 

--------------------------------------------------------------------------------

Matrix multiplication problem is a typical example of dynamical programming. 

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix.
There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500. Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy. Input Specification
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (1 <= n <= 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF): SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z" Output Specification
For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.
Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I)) Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <stack>
using namespace std;
struct node
{
int m,n;
// bool f;
};
node hash[200];
char s[1000];
int main()
{
int i,n,sum;
char c;
bool b;
scanf("%d",&n);
while(n--)
{
getchar();
scanf("%c",&c);
scanf("%d%d",&hash[c].m,&hash[c].n);
}
node temp,temp1;
while(scanf("%s",s)!=EOF)
{ sum=0;b=1;
stack<char> s1;
stack<node> s2;
for(i=0;s[i]!='\0';i++)
{
if(s[i]=='(')
s1.push(s[i]);
else if(s[i]==')')
{
c=s1.top();
s1.pop();
s1.pop();
while(!s1.empty()&&s1.top()!='(')
{
temp=s2.top();
s2.pop();
temp1=s2.top();
if(temp1.n!=temp.m)
{
b=0;break;
}
sum+=temp1.m*temp1.n*temp.n;
temp1.n=temp.n;
s2.pop();
s2.push(temp1);
s1.pop();
}
s1.push(c);
}
else
{
if(!s1.empty()&&s1.top()!='(')
{
temp=s2.top();
if(temp.n!=hash[s[i]].m)
{
b=0;break;
}
sum+=temp.m*temp.n*hash[s[i]].n;
temp.n=hash[s[i]].n;
s2.pop();
s2.push(temp);
}
else
{
s2.push(hash[s[i]]);
s1.push('#');
}
}
}
if(b)
printf("%d\n",sum);
else
printf("error\n");
}
return 0;
}

  

  

poj 2246 (zoj 1094)的更多相关文章

  1. POJ 1775 (ZOJ 2358) Sum of Factorials

    Description John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematic ...

  2. POJ 2260(ZOJ 1949) Error Correction 一个水题

    Description A boolean matrix has the parity property when each row and each column has an even sum, ...

  3. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  4. poj 3335(半平面交)

    链接:http://poj.org/problem?id=3335     //大牛们常说的测模板题 ------------------------------------------------- ...

  5. poj 3122 (二分查找)

    链接:http://poj.org/problem?id=3122 Pie Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1 ...

  6. poj3270 && poj 1026(置换问题)

    | 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...

  7. POJ——3169Layout(差分约束)

    POJ——3169Layout Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14702   Accepted ...

  8. POJ 3252 (数位DP)

    ###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...

  9. POJ 3368 (ST表)

    链接:http://poj.org/problem?id=3368 题意:给出n个连续单调不递减数,q次询问,每次询问区间(L,R)出现频率最多的数,问出现了多少次 思路:因为n个数是单调不递减的,所 ...

随机推荐

  1. Log4j使用教程 (转载http://www.codeceo.com/article/log4j-usage.html)

    日志是应用软件中不可缺少的部分,Apache的开源项目log4j是一个功能强大的日志组件,提供方便的日志记录.在apache网站:jakarta.apache.org/log4j 可以免费下载到Log ...

  2. 《CODE》讲了什么?

    本书首先从黑夜中用手电筒开关灯的方式来与小伙伴交流从而引出了编码与组合的概念,并阐明了编码的本质就是交流,是一种用来在机器与人之间传递信息的方式.然后在第 2~3 章中讲述了编码与组合的应用,如电报机 ...

  3. 新一代 PHP 加速插件 Zend Opcache <转>

    注: 由于原链接已不存在, 所以我把图片重新整理了一下, 以便看起来更加直观 笔者注: 1>  PHP 性能提升之 PHP NG  =>  php next generation wiki ...

  4. 【转】string常用函数

    原文地址:http://hi.baidu.com/baowup/blog/item/3a27465c86d71546faf2c066.html/cmtid/de1ef3f0de7554a0a40f52 ...

  5. POJ 1113 Wall 求凸包的两种方法

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31199   Accepted: 10521 Descriptio ...

  6. Chain of Responsibility 责任链模式

    简介 责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其[下家]的引用而连接起来形成一条链,请求在这个链上[传递],直到链上的某一个对象决定处理此请求.发出这个请求的客户端并不知 ...

  7. visual studio 2015 删除空行 ,缩进css

    查找  ^(?([^\r\n])\s)*\r?$\r?\n

  8. C#-高血压生活习惯数据模拟

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace test ...

  9. repeater控件 + marquee标签 实现文字滚动显示

    各种信息网站.BBS等网站上的公告信息模块的实现 拖出一个repeater控件绑定数据库中要显示的信息 在repeater的 <ItemTemplate> ... </ItemTem ...

  10. SQL中 patindex函数的用法

    语法格式:PATINDEX ( '%pattern%' , expression ) 返回pattern字符串在表达式expression里第一次出现的位置,起始值从1开始算. pattern字符串在 ...