[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.1
For fixed basis of in $\scrH$ and $\scrK$, the matrix $A^*$ is the conjugate transpose of the matrix of $A$.
Solution. $$\beex \bea (A^*)_{ij}&=e_i^*A^*f_j\\ &=\sef{e_i,A^*f_j}_\scrH\\ &=\sef{Ae_i,f_j}_\scrK\\ &=\overline{\sef{f_j,Ae_i}}\\ &=\overline{a}_{ji}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.1的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- Node.js:JavaScript脚本运行环境
Node.js https://nodejs.org/ 2016-08-03
- 几个css的小知识点(一)
1.对于不能确定宽度的div让它水平居中. <div class='father'> <div class='son'>居中</div> </div> ...
- C#多线程(一)
一.定义与理解 1.定义 线程是操作系统分配CPU时间片的基本单位,每个运行的引用程序为一个进程,这个进程可以包含一个或多个线程. 线程是进程中的执行流程,每个线程可以得到一小段程序的执行时间,在单核 ...
- Web应用工作流程总结
了解Web应用的工作过程有益于Web测试时更好的理解,Web应用工作的过程分为以下5个步骤: 1. 用户在Web浏览器中输入一个Web地址.选择一个超链接或点击一个按钮 2. Web浏览器将用户的动作 ...
- WPF学习笔记3——Layout之1
一.概述 了解XAML的基本之后,进入Layout的学习.Layout,即布局,可能需要用到几种不同的容器.每一种容器都有各自的逻辑.在用户界面的设计过程中,很多时候是在想办法使得界面更加吸引.实在. ...
- Unity3d Shader开发(三)Pass(Pass Tags,Name,BindChannels )
Pass Tags 通过使用tags来告诉渲染引擎在什么时候该如何渲染他们所期望的效果. Syntax 语法 Tags { "TagName1" = "Value1&qu ...
- caffe之(五)loss层
在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要 ...
- Mysql不区分大小写
mysql在windows下表名是不区分大小写的,但是在linux下是区分大小写的: 今天帮朋友解决安装到ubuntu系统下mysql不区分大小写的问题,最初在/etc/my.cnf文件中的[mysq ...
- 判断js中各种数据的类型方法之typeof与0bject.prototype.toString讲解
提醒大家,Object.prototype.toString().call(param)返回的[object class]中class首字母是大写,像JSON这种甚至都是大写,所以,大家判断的时候可以 ...
- 在安装MySQL Workbentch的时候出现如下问题,已经解决。
mysql workbench cannot be executed from a path that contains non-ASCII characters. this problem is i ...