传送门

神仙计数题 Orz

先令\(F[k]\)表示出现次数恰好为\(S\)次的颜色恰好有\(k\)中的方案数,那么

\[Ans=\sum\limits_{i=0}^mW_iF[i]
\]

怎么求\(F[k]\)呢?一个naive的想法,我指定哪\(k\)种颜色恰好染\(S\)次,然后剩下的\(n-kS\)个位置用剩下的\(m-k\)种颜色随便染

相当与对一个有\(k+1\)种元素的集合(前\(k\)中元素分别有\(S\)个,最后一种元素有\(n-kS\)个)做可重复集合全排列

这个方案数是\(\frac{n!}{(S!)^k(n-kS)!}\)的

剩下的\(n-kS\)个位置又可以用剩下的颜色随便染,所以还要乘上\((m-k)^{n-kS}\)

所以我们得到了一个柿子\(\binom{m}{k}\times\frac{n!}{(S!)^k(n-kS)!}\times (m-k)^{n-kS}\)

从这个柿子也可以看出,合法的颜色种数不会超过\(lim=\min(m,\lfloor n/S\rfloor)\)

然后发现他假了,首先这样得到的并不是恰好有\(k\)种的方案数,其次在后面随便染色的时候我们还可能算上重复的方案,它根本不能称为方案数。

但不要放弃希望,我们把上面的柿子叫做\(G[k]\)好了。考虑怎么用\(F\)算\(G\),又有一个naive的想法枚举合法的颜色有多少个得到这个柿子

\(G[k]=\sum_{i=k}^{lim} F[i]\)

但上面我们说过了,\(G[k]\)可能会算上重复的方案数。

对于一个恰好有\(i\)种颜色满足要求的方案,不难发现在\(G[k]\)中会被重复计算\(\binom{i}{k}\)次(先在\(i\)个颜色中指定\(k\)个然后剩下的随便染,这样可能会染到同一种方案)

所以

\[G[k]=\sum\limits_{i=k}^{lim} \binom{i}{k} F[i]
\]

发现右边出现了组合数,这恰恰是一个可以二项式反演的柿子,于是反演一波得到

\[F[k]=\sum\limits_{i=k}^{lim} (-1)^{i-k}\binom{i}{k} G[i]
\]

这样就可以得到一个平方的算法了,考虑优化。

先把组合数炸开来

\[F[k]=\sum\limits_{i=k}^{lim} (-1)^{i-k}\frac{i!}{k!(i-k)!}G[i]
\]

然后

\[F[k]\times k!=\sum\limits_{i=k}^{lim}\frac{(-1)^{i-k}}{(i-k)!}\times i!G[i]
\]

令\(A[i]=i!G[i],B[i]=\frac{(-1)^i}{i!}\),有

\[F[k]\times k!=\sum\limits_{i=k}^{lim} A[i]B[i-k]
\]

这个柿子已经有点可以卷积了,随便翻转\(A\)或者\(B\)都可以,下面翻转\(A\)好了,令翻转\(A[0...lim]\)后得到\(A^T\),那么

\[F[k]\times k!=\sum\limits_{i=k}^{lim} A^T[lim-i]B[i-k]
\]

将\(A\)与\(B\)卷积,然后\(F[k]\times k!\)就是卷积的第\(lim-k\)项。

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for (int i=(a);i<(b);++i)
#define per(i,a,b) for (int i=(a)-1;i>=(b);--i)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
typedef double db;
typedef long long ll;
typedef pair<int,int> PII;
typedef vector<int> VI; const int NN=1e7+10,N=3e5+10,P=1004535809;
inline int add(int x,int y) {return (x+=y)>=P?x-P:x;}
inline int sub(int x,int y) {return (x-=y)<0?x+P:x;}
inline int normal(int x) {return x<0?x+P:x;}
inline int fpow(int x,int y) {
int ret=1; for(;y;y>>=1,x=1ll*x*x%P)
if(y&1) ret=1ll*ret*x%P;
return ret;
}
const int gn=3,ign=fpow(gn,P-2); int fac[NN],ifac[NN],inv[NN];
inline int getC(int n,int r) {return 1ll*fac[n]*ifac[n-r]%P*ifac[r]%P;} namespace Poly {
int rev[N];
inline void init(int n) {
rep(i,0,n) rev[i]=rev[i>>1]>>1|((i&1)?n>>1:0);
} void ntt(int *f,int n,int flg) {
rep(i,0,n) if(rev[i]<i) swap(f[i],f[rev[i]]);
for(int len=2,k=1;len<=n;len<<=1,k<<=1) {
int wn=fpow(flg==1?gn:ign,(P-1)/len);
for(int i=0;i<n;i+=len)
for(int j=i,w=1;j<i+k;j++,w=1ll*w*wn%P) {
int tmp=1ll*w*f[j+k]%P;
f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
}
}
if(flg==-1) {
int invn=fpow(n,P-2);
rep(i,0,n+1) f[i]=1ll*f[i]*invn%P;
}
}
}
using Poly::ntt; void init(int n) {
ifac[0]=ifac[1]=fac[0]=fac[1]=inv[1]=1;
rep(i,2,n+1) {
inv[i]=1ll*inv[P%i]*(P-P/i)%P;
ifac[i]=1ll*ifac[i-1]*inv[i]%P;
fac[i]=1ll*fac[i-1]*i%P;
}
} int A[N],B[N],W[N]; int main() {
#ifdef LOCAL
freopen("a.in","r",stdin);
#endif
int n,m,s; scanf("%d%d%d",&n,&m,&s);
rep(i,0,m+1) scanf("%d",&W[i]);
init(max(max(n,m),s));
int lim=min(m,n/s);
rep(i,0,lim+1) {
A[i]=1ll*fac[i]*getC(m,i)%P*fac[n]%P*fpow(ifac[s],i)%P
*ifac[n-i*s]%P*fpow(m-i,n-i*s)%P;
B[i]=(i&1)?P-ifac[i]:ifac[i];
}
reverse(A,A+lim+1);
int limit=1; while(limit<=2*lim) limit<<=1; Poly::init(limit);
ntt(A,limit,1),ntt(B,limit,1);
rep(i,0,limit) A[i]=1ll*A[i]*B[i]%P;
ntt(A,limit,-1);
int ans=0;
rep(i,0,m+1) ans=add(ans,1ll*W[i]*A[lim-i]%P*ifac[i]%P);
printf("%d\n",ans);
return 0;
}

[题解 LuoguP4491 [HAOI2018]染色的更多相关文章

  1. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  2. 【题解】HAOI2018染色

    好坑啊不开心…… 其实这题的想法还是比较简单粗暴的.题目明示恰好xxx,显然排除斜率二分这个玩意儿,那么不就只剩下容斥了嘛…… 令 \(A_{x}\) 为恰好出现了 \(S\) 次的至少有 \(x\) ...

  3. luoguP4491 [HAOI2018]染色 广义容斥原理 + FFT

    非常明显的摆了一个NTT模数.... 题目中求恰好\(k\),那么考虑求至少\(k\) 记\(g(k)\)表示至少\(k\)中颜色出现了恰好\(S\)次 那么,\[g(k) = \binom{M}{k ...

  4. [洛谷P4491] [HAOI2018]染色

    洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...

  5. 【LG4491】[HAOI2018]染色

    [LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...

  6. BZOJ 5306 [HAOI2018] 染色

    BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...

  7. 【BZOJ5306】 [Haoi2018]染色

    BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include ...

  8. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  9. 【BZOJ5306】[HAOI2018]染色(NTT)

    [BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...

随机推荐

  1. MSE-初始化MSE

    MSE(Mobility Services Engine) Cisco MSE可以配合无线实现很多功能,MSE的功能简单概括有: 1.基本位置服务捕获并聚合关键网络信息,例如设备位置,RF频谱详细信息 ...

  2. 后端——框架——持久层框架——Mybatis——《Mybatis从入门到精通》读书笔记——初篇

    1.Mybatis知识点 框架的知识点大致可以分为三个部分 基础: 介绍编写增,删,改,查: 动态标签: config配置文件 Mapper配置文件 插件:常见的插件有三个 pageHelper:分页 ...

  3. Nginx实现HTTP及TCP负载均衡

    这种通过一台apache的服务器把客户请求分别传递给两台tomcat叫负载均衡  ========================================= ================= ...

  4. Binary Heap(二叉堆) - 堆排序

    这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...

  5. 如何安装部署和优化Tomcat?(Tomcat部署和优化与压测,虚拟主机配置,Tomcat处理请求的过程)

    文章目录 前言 一:Tomcat安装部署 1.1:Tomcat简介 1.2:Tomcat核心组件 1.3:Tomcat处理请求的过程 1.3.1:请求过程基本解释 1.3.2:请求过程详细解释 1.4 ...

  6. SpringBoot与Mybatis整合,插件生成dao、mapper、pojo

    一.创建SpringBoot项目,引入相关依赖包 <?xml version="1.0" encoding="UTF-8"?> <projec ...

  7. JavaScript高级特征之面向对象笔记二

    Prototype 1.  当声明一个函数的时候,浏览器会自动为该函数添加一个属性prototype, 2.  该属性的默认值为{} 3.  可以动态的给prototype增加key和value值 4 ...

  8. [转]使用Struts 2防止表单重复提交

    转自 用户重复提交表单在某些场合将会造成非常严重的后果.例如,在使用信用卡进行在线支付的时候,如果服务器的响应速度太慢,用户有可能会多次点击提交按钮,而这可能导致那张信用卡上的金额被消费了多次.因此, ...

  9. C++常量表达式、const、constexpr(C++11新增)的区别

    常量表达式是指值不会改变且在编译过程中就能够得到计算结果的表达式,能在编译时求值的表达式. 程序先编译再运行:  在编译阶段, 编译器将在编译过程中把用到该常量的地方都全都替换为 常量的值. 但是常量 ...

  10. Windows的本地时间(LocalTime)、系统时间(SystemTime)、格林威治时间(UTC-Time)、文件时间(FileTime)之间的转换

    今天处理了一个Bug,创建历史数据时脚本函数的起始时间不赋值或者赋0值时,计算引擎推给历史库的UTC时间为-288000000000,一开始以为是bug,经过分析后发现不赋值默认给起始时间赋0值,而此 ...