Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!
方法1:首先算出最小生成树的权值和ans,然后枚举删除最小生成树中的每一条边,若还可以达到相同的效果,就说明最小生成树不唯一,
因为两个不同的最小生成树至少有一条边不同,所以我们才可以枚举删除每一条边.
方法2:判断最小生成树和次小生成树的权值是否相同.
#include<iostream>
#include<vector>
#include<algorithm>
#include<stdio.h>
using namespace std;
typedef long long ll;
const int maxn=;
int f[maxn];
struct node
{
int u,v,w;
bool operator < (const node &r)const{
return w<r.w;
}
}q[maxn];
int Find(int x)
{
return f[x]==x?x:f[x]=Find(f[x]);
}
int Merge(int u,int v)
{
u=Find(u);
v=Find(v);
if(u!=v)return f[u]=v,;
return ;
}
vector<int>v;
int main()
{
int T;
cin>>T;
while(T--){
v.clear();
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++)f[i]=i;
for(int i=;i<=m;i++){
cin>>q[i].u>>q[i].v>>q[i].w;
}
sort(q+,q++m);
int ans=;
for(int i=;i<=m;i++){
int x=Merge(q[i].u,q[i].v);
if(x){
v.push_back(i);
ans+=q[i].w;
}
}
int flag=;
for(int i=;i<v.size();i++){
int sum=,cnt=;
for(int j=;j<=n;j++)f[j]=j;
for(int j=;j<=m;j++){
if(j==v[i])continue;
int x=Merge(q[j].u,q[j].v);
if(x){
sum+=q[j].w;
cnt++;
}
}
if(cnt==n-&&ans==sum){
flag=;
break;
}
}
if(flag)cout<<ans<<endl;
else printf("Not Unique!\n"); }
return ;
}
#include<iostream>
#include<cstring> using namespace std;
typedef long long ll;
const int maxn=;
const int INF=0x3f3f3f3f;
int Maxlen[maxn][maxn];
int dis[maxn],vis[maxn];
int pre[maxn],MAP[maxn][maxn];
int used[maxn][maxn];
int n,m; int Prim(int x)
{
memset(Maxlen,,sizeof(Maxlen));
memset(dis,INF,sizeof(dis));
memset(vis,,sizeof(vis));
memset(pre,,sizeof(pre));
memset(used,,sizeof(used));
for(int i=;i<=n;i++){
dis[i]=MAP[x][i];
pre[i]=x;
}
dis[x]=;
vis[x]=;
pre[x]=;
int ans=;
for(int i=;i<=n;i++){
int u=,minn=INF;
for(int j=;j<=n;j++){
if(!vis[j]&&dis[j]<minn){
u=j;
minn=dis[j];
}
}
vis[u]=;
ans+=minn;
used[u][pre[u]]=used[pre[u]][u]=;
for(int v=;v<=n;v++){
if(vis[v]){
Maxlen[u][v]=Maxlen[v][u]=max(Maxlen[v][pre[u]],dis[u]);
}
else{
if(dis[v]>MAP[u][v]){
dis[v]=MAP[u][v];
pre[v]=u;
}
}
}
}
return ans;
}
void sst(int ans)
{
int sum=INF;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(!used[i][j]&&MAP[i][j]!=INF){
sum=min(sum,ans+MAP[i][j]-Maxlen[i][j]);
}
}
}
if(sum==ans)cout<<"Not Unique!"<<endl;
else cout<<ans<<endl;
}
int main()
{
int T;
cin>>T;
while(T--){
cin>>n>>m;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j)MAP[i][j]=;
else MAP[i][j]=INF;
}
}
for(int i=;i<=m;i++){
int u,v,w;
cin>>u>>v>>w;
MAP[u][v]=MAP[v][u]=min(MAP[u][v],w);
}
int ans=Prim();
sst(ans);
}
return ;
}

K - The Unique MST (最小生成树的唯一性)的更多相关文章

  1. The Unique MST(最小生成树的唯一性判断)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  2. K - The Unique MST

    K - The Unique MST #include<iostream> #include<cstdio> #include<cstring> #include& ...

  3. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  4. POJ 1679 The Unique MST (最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  5. K - The Unique MST - poj 1679

    题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...

  6. POJ1679 The Unique MST(Kruskal)(最小生成树的唯一性)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27141   Accepted: 9712 D ...

  7. poj1679 The Unique MST(最小生成树唯一性)

    最小生成树的唯一性,部分参考了oi-wiki 如果一条不在最小生成树边集内的边,它可以替换一条在最小生成树边集内,且权值相等的边,那么最小生成树不是唯一的 同过kruskal来判断 考虑权值相等的边, ...

  8. (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  9. The Unique MST (判断是否存在多个最小生成树)

    The Unique MST                                                                        Time Limit: 10 ...

随机推荐

  1. Day 5 :ArrayList原理、LinkedList原理和方法和迭代器注意事项

    迭代器在变量元素的时候要注意事项: 在迭代器迭代元素 的过程中,不允许使用集合对象改变集合中的元素个数,如果需要添加或者删除只能使用迭代器的方法进行操作.   如果使用过了集合对象改变集合中元素个数那 ...

  2. jQuery实现轮播图--入门

    jQuery是一个前台的框架. 主要函数: setInterval 语法:setInterval(code,millisec[,"lang"]) cdoe:需要执行的代码或者要调用 ...

  3. java多线程之volatile关键字

    public class ThreadVolatile extends Thread { public boolean flag=true; @Override public void run() { ...

  4. 抓DHCP客户端ip脚本

    cat testnew.sh #!/bin/bash catch_ip (){Ip=`sudo nmap -sP 192.168.1.0/24 |grep -i -B2 $mac|grep Nmap ...

  5. Cracking Digital VLSI Verification Interview 第三章

    目录 Programming Basics Basic Programming Concepts Object Oriented Programming Concepts UNIX/Linux Pro ...

  6. python基础2--进制、字符编码和文件处理

    一.进制 1.二进制 定义 二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是"逢二进一"   转换方式 二进制转换为十进制: 把二进制数按权展开.相加即得十进制数. ...

  7. Java之创建线程的方式三:实现Callable接口

    import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util ...

  8. retrofit 上传文件 跟参数

    @Multipart @POST("postFied") Call<Void> postFied(@PartMap Map<String,String> m ...

  9. pycharm2018专业版

    https://blog.csdn.net/moshanghuali/article/details/94396935 1 下载Pycharm专业版2018.3.1许多人直接在官网直接下载,默认的都是 ...

  10. 3.react 基础 - JSX 语法

    1.最基础的 JSX 语法 普通javaScript中 引入 标签 let html = '<h1>hello</h1>'; jsx语法 let JSX_html = < ...