Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!
方法1:首先算出最小生成树的权值和ans,然后枚举删除最小生成树中的每一条边,若还可以达到相同的效果,就说明最小生成树不唯一,
因为两个不同的最小生成树至少有一条边不同,所以我们才可以枚举删除每一条边.
方法2:判断最小生成树和次小生成树的权值是否相同.
#include<iostream>
#include<vector>
#include<algorithm>
#include<stdio.h>
using namespace std;
typedef long long ll;
const int maxn=;
int f[maxn];
struct node
{
int u,v,w;
bool operator < (const node &r)const{
return w<r.w;
}
}q[maxn];
int Find(int x)
{
return f[x]==x?x:f[x]=Find(f[x]);
}
int Merge(int u,int v)
{
u=Find(u);
v=Find(v);
if(u!=v)return f[u]=v,;
return ;
}
vector<int>v;
int main()
{
int T;
cin>>T;
while(T--){
v.clear();
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++)f[i]=i;
for(int i=;i<=m;i++){
cin>>q[i].u>>q[i].v>>q[i].w;
}
sort(q+,q++m);
int ans=;
for(int i=;i<=m;i++){
int x=Merge(q[i].u,q[i].v);
if(x){
v.push_back(i);
ans+=q[i].w;
}
}
int flag=;
for(int i=;i<v.size();i++){
int sum=,cnt=;
for(int j=;j<=n;j++)f[j]=j;
for(int j=;j<=m;j++){
if(j==v[i])continue;
int x=Merge(q[j].u,q[j].v);
if(x){
sum+=q[j].w;
cnt++;
}
}
if(cnt==n-&&ans==sum){
flag=;
break;
}
}
if(flag)cout<<ans<<endl;
else printf("Not Unique!\n"); }
return ;
}
#include<iostream>
#include<cstring> using namespace std;
typedef long long ll;
const int maxn=;
const int INF=0x3f3f3f3f;
int Maxlen[maxn][maxn];
int dis[maxn],vis[maxn];
int pre[maxn],MAP[maxn][maxn];
int used[maxn][maxn];
int n,m; int Prim(int x)
{
memset(Maxlen,,sizeof(Maxlen));
memset(dis,INF,sizeof(dis));
memset(vis,,sizeof(vis));
memset(pre,,sizeof(pre));
memset(used,,sizeof(used));
for(int i=;i<=n;i++){
dis[i]=MAP[x][i];
pre[i]=x;
}
dis[x]=;
vis[x]=;
pre[x]=;
int ans=;
for(int i=;i<=n;i++){
int u=,minn=INF;
for(int j=;j<=n;j++){
if(!vis[j]&&dis[j]<minn){
u=j;
minn=dis[j];
}
}
vis[u]=;
ans+=minn;
used[u][pre[u]]=used[pre[u]][u]=;
for(int v=;v<=n;v++){
if(vis[v]){
Maxlen[u][v]=Maxlen[v][u]=max(Maxlen[v][pre[u]],dis[u]);
}
else{
if(dis[v]>MAP[u][v]){
dis[v]=MAP[u][v];
pre[v]=u;
}
}
}
}
return ans;
}
void sst(int ans)
{
int sum=INF;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(!used[i][j]&&MAP[i][j]!=INF){
sum=min(sum,ans+MAP[i][j]-Maxlen[i][j]);
}
}
}
if(sum==ans)cout<<"Not Unique!"<<endl;
else cout<<ans<<endl;
}
int main()
{
int T;
cin>>T;
while(T--){
cin>>n>>m;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j)MAP[i][j]=;
else MAP[i][j]=INF;
}
}
for(int i=;i<=m;i++){
int u,v,w;
cin>>u>>v>>w;
MAP[u][v]=MAP[v][u]=min(MAP[u][v],w);
}
int ans=Prim();
sst(ans);
}
return ;
}

K - The Unique MST (最小生成树的唯一性)的更多相关文章

  1. The Unique MST(最小生成树的唯一性判断)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  2. K - The Unique MST

    K - The Unique MST #include<iostream> #include<cstdio> #include<cstring> #include& ...

  3. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  4. POJ 1679 The Unique MST (最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  5. K - The Unique MST - poj 1679

    题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...

  6. POJ1679 The Unique MST(Kruskal)(最小生成树的唯一性)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27141   Accepted: 9712 D ...

  7. poj1679 The Unique MST(最小生成树唯一性)

    最小生成树的唯一性,部分参考了oi-wiki 如果一条不在最小生成树边集内的边,它可以替换一条在最小生成树边集内,且权值相等的边,那么最小生成树不是唯一的 同过kruskal来判断 考虑权值相等的边, ...

  8. (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  9. The Unique MST (判断是否存在多个最小生成树)

    The Unique MST                                                                        Time Limit: 10 ...

随机推荐

  1. python刷LeetCode:14. 最长公共前缀

    难度等级:简单 题目描述: 编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower",& ...

  2. Postgres psql: 致命错误: 角色 "postgres" 不存在

    问题再现 当前环境: postgresql: 11.5 windows 10 企业版LTSC 64位 当运行"C:\Program Files\PostgreSQL\11\scripts\r ...

  3. 用ps画一个Gif的小房子(1)

    效果如图: 制作方法: 1.新建200*200的画布:复制一块小房子图片 2.点击窗口-时间轴-勾选帧动画 3.如图所示(我这边是一帧对应一个图层) 4.新建图层-这边要新建24个图层,每个图层对应不 ...

  4. phpstorm 的下载、安装与激活

    1.phpstorm的下载地址 https://www.jetbrains.com/phpstorm/ 下载后的安装包如图: 2.phpstorm的安装过程 跟据电脑系统下载安装对应版本 一路点击下一 ...

  5. windows server 2012 ftp搭建

    1.安装IIS的时候勾选ftp 2.创建ftp站点,先检查21端口是否开放 一定要勾选身份认证,匿名去掉,不然一直登陆不了,也不提示 一直点下一步, 遇到的坑,第一个:出现“打开ftp服务器上的文件夹 ...

  6. Map 查找表操作

    package seday13; import java.util.HashMap; import java.util.Map; /** * @author xingsir * java.util.M ...

  7. Ubuntu apt install 下载软件很慢的解决办法

    1.打开/etc/apt/sources.list 将内容替换为以下内容(注意把sources.list文件备份一下) deb http://mirrors.aliyun.com/ubuntu/ xe ...

  8. c语言中%s和%d的区别

    /************************************************************************* > File Name: ptr_both. ...

  9. Thread--线程工作万花筒

    线程工作内存图. 线程状态.

  10. h5-应用级缓存

    1.html代码及css代码 <!DOCTYPE html> <!--manifest="应用程序缓存清单文件的路径 建议文件的扩展名是appcacje,这个文件的本质就是 ...