# -*- coding: utf-8 -*-
"""
lsomap """
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据 :return: 一个元组,依次为训练样本集和样本集的标记
'''
iris=datasets.load_iris()# 使用 scikit-learn 自带的 iris 数据集
return iris.data,iris.target def test_lsomap(*data):
'''
测试 lsomap 的用法 :param data: 可变参数。它是一个元组,这里要求其元素依次为:训练样本集、训练样本的标记
:return: None
'''
X,y=data
for n in [4,3,2,1]: # 依次考察降维目标为 4维、3维、2维、1维
lsomap=manifold.lsomap(n_components=n)
lsomap.fit(X)
print('reconstruction_error(n_components=%d) : %s'%
(n, lsomap.reconstruction_error()))
def plot_lsomap_k(*data):
'''
测试 lsomap 中 n_neighbors 参数的影响,其中降维至 2维 :param data: 可变参数。它是一个元组,这里要求其元素依次为:训练样本集、训练样本的标记
:return: None
'''
X,y=data
Ks=[1,5,25,y.size-1] # n_neighbors参数的候选值的集合 fig=plt.figure()
for i, k in enumerate(Ks):
lsomap=manifold.lsomap(n_components=2,n_neighbors=k)
X_r=lsomap.fit_transform(X)#原始数据集转换到二维 ax=fig.add_subplot(2,2,i+1)## 两行两列,每个单元显示不同 n_neighbors 参数的 lsomap 的效果图
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),
(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2),)# 颜色集合,不同标记的样本染不同的颜色
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"
%label,color=color) ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("lsomap")
plt.show()
def plot_lsomap_k_d1(*data):
'''
测试 lsomap 中 n_neighbors 参数的影响,其中降维至 1维 :param data: 可变参数。它是一个元组,这里要求其元素依次为:训练样本集、训练样本的标记
:return: None
'''
X,y=data
Ks=[1,5,25,y.size-1]# n_neighbors参数的候选值的集合 fig=plt.figure()
for i, k in enumerate(Ks):
lsomap=manifold.lsomap(n_components=1,n_neighbors=k)
X_r=lsomap.fit_transform(X)#原始数据集转换到 1 维 ax=fig.add_subplot(2,2,i+1)## 两行两列,每个单元显示不同 n_neighbors 参数的 lsomap 的效果图
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),
(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2),)# 颜色集合,不同标记的样本染不同的颜色
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),
label="target= %d"%label,color=color) ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("lsomap")
plt.show()
if __name__=='__main__':
X,y=load_data() # 产生用于降维的数据集
test_lsomap(X,y) # 调用 test_lsomap
#plot_lsomap_k(X,y) # 调用 plot_lsomap_k
#plot_lsomap_k_d1(X,y) # 调用 plot_lsomap_k_d1

  

lsomap降维的更多相关文章

  1. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  2. 用scikit-learn进行LDA降维

    在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结. 1. 对scikit-learn中LDA类概述 在scikit-le ...

  3. scikit-learn一般实例之四:使用管道和GridSearchCV选择降维

    本例构建一个管道来进行降维和预测的工作:先降维,接着通过支持向量分类器进行预测.本例将演示与在网格搜索过程进行单变量特征选择相比,怎样使用GrideSearchCV和管道来优化单一的CV跑无监督的PC ...

  4. 机器学习基础与实践(三)----数据降维之PCA

    写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...

  5. 数据降维技术(1)—PCA的数据原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  6. Javascript实现的数组降维——维度不同,怎么谈恋爱

    数组的元素可能是数组,这样一层层嵌套,可能得到一个嵌套很深的数组,数组降维要做的事就是把嵌套很深的数组展开,一般最后得到一个一维数组,其中的元素都是非数组元素,比如数组[1, [2, 3, [4, 5 ...

  7. 运用PCA进行降维的好处

    运用PCA对高维数据进行降维,有一下几个特点: (1)数据从高维空间降到低维,因为求方差的缘故,相似的特征会被合并掉,因此数据会缩减,特征的个数会减小,这有利于防止过拟合现象的出现.但PCA并不是一种 ...

  8. 机器学习笔记----四大降维方法之PCA(内带python及matlab实现)

    大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效 ...

  9. PCA数据降维

    Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的 ...

随机推荐

  1. Rocket - diplomacy - enumerateMask

    https://mp.weixin.qq.com/s/s3hr5JJX2_pwNgdu8WqV0Q   介绍enumerateMask的实现.(仅供理解,非严谨证明)   ​​   1. 基本定义   ...

  2. Chisel3 - 参考资料汇总

    https://mp.weixin.qq.com/s/mIexKCFA1MQNOl4M_iVkjg ​​   1. 官方网站   https://chisel.eecs.berkeley.edu/   ...

  3. Java实现 LeetCode 229 求众数 II(二)

    229. 求众数 II 给定一个大小为 n 的数组,找出其中所有出现超过 ⌊ n/3 ⌋ 次的元素. 说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1). 示例 1: 输入: [3,2, ...

  4. Java实现 蓝桥杯VIP 算法提高 色盲的民主

    算法提高 色盲的民主 时间限制:1.0s 内存限制:256.0MB  色盲的民主 问题描述 n个色盲聚在一起,讨论一块布的颜色.尽管都是色盲,却盲得各不相同.每个人都有自己的主张,争论不休.最终,他 ...

  5. Java实现 LeetCode 75 颜色分类

    75. 颜色分类 给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 此题中,我们使用整数 0. 1 和 2 分别表示红 ...

  6. Java实现LeetCode 139 单词拆分

    public boolean wordBreak(String s, List<String> wordDict) { if(s.length() == 0){ return false; ...

  7. Swagger使用的时候报错:Failed to load API definition

    NuGet添加Swashbuckle.AspNetCore,在Startup.cs添加和启用中间件Swagger public void ConfigureServices(IServiceColle ...

  8. 练习C++的vector语法-约瑟夫问题

    //测试vector,约瑟夫问题 #include <iostream> #include <vector> using namespace std; int main() { ...

  9. java实现简单的oss存储

    oss 工作中需要用到文件上传,之前使用的是本地文件系统存储方式,后来重构为支持多个存储源的方式,目前支持三种方式:local.seaweedfs.minio 存储介质 seaweedfs seawe ...

  10. AbstractCollection类中的 T[] toArray(T[] a)方法源码解读

    一.源码解读 @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { //size为集合的大小 i ...