As the current heir of a wizarding family with a long history,unfortunately, you find yourself forced to participate in the cruel Holy Grail War which has a reincarnation of sixty years.However,fortunately,you summoned a Caster Servant with a powerful Noble Phantasm.When your servant launch her Noble Phantasm,it will construct a magic field,which is actually a directed graph consisting of n vertices and m edges.More specifically,the graph satisfies the following restrictions :

  • Does not have multiple edges(for each pair of vertices x and y, there is at most one edge between this pair of vertices in the graph) and does not have self-loops(edges connecting the vertex with itself).
  • May have negative-weighted edges.
  • Does not have a negative-weighted loop.
  • n<=300 , m<=500.

Currently,as your servant's Master,as long as you add extra 6 edges to the graph,you will beat the other 6 masters to win the Holy Grail.

However,you are subject to the following restrictions when you add the edges to the graph:

  • Each time you add an edge whose cost is c,it will cost you c units of Magic Value.Therefore,you need to add an edge which has the lowest weight(it's probably that you need to add an edge which has a negative weight).
  • Each time you add an edge to the graph,the graph must not have negative loops,otherwise you will be engulfed by the Holy Grail you summon.

Input

Input data contains multiple test cases. The first line of input contains integer t — the number of testcases (1 \le t \le 51≤t≤5).

For each test case,the first line contains two integers n,m,the number of vertices in the graph, the initial number of edges in the graph.

Then m lines follow, each line contains three integers x, y and w (0 \le x,y<n0≤x,y<n,-10^9−109≤w≤10^9109, x \not = yx​=y) denoting an edge from vertices x to y (0-indexed) of weight w.

Then 6 lines follow, each line contains two integers s,t denoting the starting vertex and the ending vertex of the edge you need to add to the graph.

It is guaranteed that there is not an edge starting from s to t before you add any edges and there must exists such an edge which has the lowest weight and satisfies the above restrictions, meaning the solution absolutely exists for each query.

Output

For each test case,output 66 lines.

Each line contains the weight of the edge you add to the graph.

这个题,我收获很大,不是在算法上的提升,而是在与对于自己的学习方式的改进,这个题暴露出诸多问题,如下:

1.对于自己写的模板,没有经过验证,使用起来,漏洞百出。

2.对于用别人的模板,看着难受,改起来费劲容易出错。

3.鉴于上一条,就要写第一条,所以以后改板子,写板子都要记下来,最好是每次自己写,现在有点后悔。

所以导致超时4遍,wa了4遍,所以吸取我的教训,除了非常固定的模板,其他都自己写,养成习惯,每次写都是对于这个算法思想的再认识。

这个题目的思路我是秒出的,因为打眼一看就能看出这个题目说的是带负边权的最短路问题,现在我们将范围缩小,只剩下了SPFA,Bellman-ford,和Floyd。 虽然这个题Floyd能过,但是不是这个题的正解。这个题首选的是bellman 或者SPFA,然后就是求填边之后的非负最小环问题。共跑6遍Bellman-ford

#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
#define Swap(a,b) a^=b^=a^=b
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define speed ios_base::sync_with_stdio(0)
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define INF 0x3f3f3f3f
#define maxn 305
#define esp 1e-9
#define mp(a,b) make_pair(a,b)
using namespace std;
typedef long long ll;
//-----------------------*******----------------------------//
const int N=1000;
int n,m;//点数,边数,编号都从0开始
long long w[N];//w[i]表示第i条边的权值(距离)
int u[N],v[N];//u[i]和v[i]分别表示第i条边的起点和终点
long long dis[N];//单源最短路径
const long long inf=(1LL<<60);
void ford(int s)
{
for(int i=0;i<=n+2;i++)
dis[i]=inf;
dis[s]=0;
for(int i=1;i<=n-1;i++)//枚举除终点外的所有点
for(int j=1;j<=m;j++)//枚举所有边
{
int x=u[j];//边j的起点
int y=v[j];//边j的终点
if(dis[x]<inf)//松弛
dis[y]=min(dis[y],dis[x]+w[j]);
}
} //就是这个板子,难受的雅痞
int main()
{
// cout<<inf;
int T;
cini(T);
while(T--)
{
cini(n);
cini(m);
for(int i=1; i<=m; i++)
{
int x,y;
long long z;
cini(x),cini(y),cinl(z);
u[i]=x;
v[i]=y;
w[i]=z;
}
for(int i=0;i<6;i++)
{
int x,y;
cini(x),cini(y);
ford(y);
long long z=dis[x];
u[++m]=x;
v[m]=y;
w[m]=-z;
printf("%lld\n",-z); }
}
}

2019 ICPC 南京网络赛 H-Holy Grail的更多相关文章

  1. 2019 ICPC 南京网络赛 F Greedy Sequence

    You're given a permutation aa of length nn (1 \le n \le 10^51≤n≤105). For each i \in [1,n]i∈[1,n], c ...

  2. 2019 ICPC南京网络赛 F题 Greedy Sequence(贪心+递推)

    计蒜客题目链接:https://nanti.jisuanke.com/t/41303 题目:给你一个序列a,你可以从其中选取元素,构建n个串,每个串的长度为n,构造的si串要满足以下条件, 1. si ...

  3. 2019 ICPC 银川网络赛 H. Fight Against Monsters

    It is my great honour to introduce myself to you here. My name is Aloysius Benjy Cobweb Dartagnan Eg ...

  4. 2019 ICPC 南昌网络赛

    2019 ICPC 南昌网络赛 比赛时间:2019.9.8 比赛链接:The 2019 Asia Nanchang First Round Online Programming Contest 总结 ...

  5. 2019 ICPC南京网络预选赛 I Washing clothes 李超线段树

    题意:有n个人,每个人有一件衣服需要洗,可以自己手洗花费t时间,也可以用洗衣机洗,但是洗衣机只有一台,即每个时刻最多只能有·一个人用洗衣机洗衣服.现在给你每个人最早可以开始洗衣服的时间,问当洗衣机的洗 ...

  6. 2019 ICPC上海网络赛 A 题 Lightning Routing I (动态维护树的直径)

    题目: 给定一棵树, 带边权. 现在有2种操作: 1.修改第i条边的权值. 2.询问u到其他一个任意点的最大距离是多少. 题解: 树的直径可以通过两次 dfs() 的方法求得.换句话说,到任意点最远的 ...

  7. 2018 ICPC南京网络赛 Set(字典树 + 合并 + lazy更新)

    题解:n个集合,你要进行m个操作.总共有3种操作.第一种,合并两个集合x和y.第二张,把特定的集合里面所有的数字加一.第三种,询问在某个集合里面,对于所有数字对2的k次方取模后,有多少个数字等于x. ...

  8. 2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2 ...

  9. 2019 ICPC 沈阳网络赛 J. Ghh Matin

    Problem Similar to the strange ability of Martin (the hero of Martin Martin), Ghh will random occurr ...

随机推荐

  1. Java第十六天,list接口

    List接口 1.三大特点: ① 有序.② 有索引. ③ 允许存在重复元素. 注意: ① 利用list接口的索引执行操作时,要防止索引越界引起的程序错误. 2.基本使用: 针对List接口有索引的特点 ...

  2. flask入门 之 Python Shell (三)

    1.代码: #encoding:utf-8 from flask_sqlalchemy import SQLAlchemy from flask_script import Manager,Shell ...

  3. Highcharts图表库

    Highcharts图表库 1.相关网址: 1)官方主页:https://www.hcharts.cn/ 2)Highcharts演示:https://www.hcharts.cn/demo/high ...

  4. "图片组件"组件:<pic> —— 快应用组件库H-UI

     <import name="pic" src="../Common/ui/h-ui/media/c_pic"></import> & ...

  5. 用three.js开发三维地图实例

    公司要做智慧消防楼层可视化,需要用到web3d,开源的引擎中先研究了cesium三维地球,但cesium做楼层感觉是大材小用,而且体验也不好,最终选用的是功能强大.更适合小型场景的three. thr ...

  6. Roles on a Machine Learning Project (机器学习项目中的角色)

    原文 :https://medium.com/machine-learning-in-practice/roles-on-a-machine-learning-project-216903a6dc12 ...

  7. Leetcode802-找到最终的安全状态(Python3)

    刚开始没思路,还以为是利用二维矩阵直接标记节点间的有向路径,最后循环遍历就能得到结果,结果最后发现方向是错的,之后看了大佬们写的代码,发现原来是用出度来实现节点是否安全的. 照着大佬们的思路重新写了一 ...

  8. Pie 杭电1969 二分

    My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N ...

  9. C - Ivan the Fool and the Probability Theory---div2

    题目连接:https://codeforces.com/contest/1248/problem/C 思路: 注意上下两排的关系,如果说上面那一排有两个方格连续,那么他相邻的两排必定和他相反,如果说当 ...

  10. Wireshark的两种过滤器与BPF过滤规则

    Wirshark使用的关键就在于过滤出想要的数据包,下面介绍怎么过滤. 抓包过滤器 Wirshark有两种过滤器,一个是抓包过滤器,一个是显示过滤器,他们之间的区别在于抓包过滤器只抓取你设置的规则,同 ...