SVM发展史

线性SVM=线性分类器+最大间隔

间隔(margin):边界的活动范围。The margin of a linear classifier is defined as the width that the boundary could be increased by before hitting a data point.

预备知识

  • 线性分类器的分割平面(超平面):Wx+b=0
  • 点到超平面的距离:\(M=\frac{ \vert g(x) \vert }{\left\|W\right\| }\),其中\(g(x)=Wx+b\)
  • SVM中正样本定义为g(x)>=1,负样本定义为g(x)<=-1
  • SVM中Wx+b=1或者Wx+b=-1的点称为支持向量

间隔的形式化描述

\(M=\frac{2}{\left\|W\right\| }\)

SVM通过最大化M来求解参数Wb的,目标函数如下:

求解 :拉格朗日乘数法,偏导为0后回带

在SVM中,原问题和对偶问题具有相同的解,W已经求出:\(W=\sum_{i=1}^{l}{\alpha_iy_ix_i}\), 不等式约束,还需要满足KKT条件。若\(\alpha_i>0\),则必有xi为支持向量,即:训练完毕后,最终模型仅和支持向量有关。

b的求解过程如下

一个实例

软间隔:加入容错量

同样采用拉格朗日乘数法求解

LD的区别仅仅体现为\(\alpha_i\)的约束不同。

非线性SVM:特征空间

通过映射到高维空间来将线性不可分的问题转换为线性可分的问题。

高维空间向量内积运算复杂度高。以二次型为例,直接计算

\(x_i⋅x_j⇒Φ(x_i)⋅Φ(x_j)\),直接计算的话,复杂度会成倍增加。

以二次型为例,理解核技巧

通过在低维空间的计算o(m),得到高维空间的结果,不需要知道变换是什么,更不需要变换结果的内积,只需要知道核函数,就可以达到相同的目标。(变换结果的内积)

请看实例,二维空间

常用的核函数

多项式变换中,当d=2时,就是二次型变换。

此时w和b的结果如下:

将\(x_i\)换为\(\phi(x_i)\),将\(\phi(x_i)\cdot \phi(x_j)\)换为\(K(x_i,x_j)\),其余都不变,真的很简洁。

SVM在Scikit-Learn中的应用

  • Linear SVM:\(min\frac{1}{2}\left\|w\right\|^2+C\sum{\zeta^2}\)
LinearSVC(
penalty='l2',
C=1.0,#就是目标函数的C,C越大(eg:1e9),容错空间越小,越接近硬边界的SVM(最初的SVM,基本不用),C越小(eg:C=0.01),容错空间越大,越接近soft Magin.
)
  • 核函数 SVM:from sklearn.svm import SVC
SVC(
C=1.0,
kernel='rbf',
degree=3,#多项式核函数的指数d
gamma='scale',#高斯基函数中的参数gamma,越大,函数分布越狭窄; gamma越小,决策边界越松弛,当很小时,可以认为趋于无穷大成一条直线了,这时就欠拟合了。gamma取值越大,决策边界越收紧,当很小时,会无限包紧样本点,这时就过拟合了。
)

支持向量机SVM知识梳理和在sklearn库中的应用的更多相关文章

  1. 2.sklearn库中的标准数据集与基本功能

    sklearn库中的标准数据集与基本功能 下面我们详细介绍几个有代表性的数据集: 当然同学们也可以用sklearn机器学习函数来挖掘这些数据,看看可不可以捕捉到一些有趣的想象或者是发现: 波士顿房价数 ...

  2. scikit_learn (sklearn)库中NearestNeighbors(最近邻)函数的各参数说明

    NearestNeighbors(n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, ...

  3. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  4. Python初探——sklearn库中数据预处理函数fit_transform()和transform()的区别

    敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: ...

  5. 1.sklearn库的安装

    sklearn库 sklearn是scikit-learn的简称,是一个基于Python的第三方模块.sklearn库集成了一些常用的机器学习方法,在进行机器学习任务时,并不需要实现算法,只需要简单的 ...

  6. day-10 sklearn库实现SVM支持向量算法

    学习了SVM分类器的简单原理,并调用sklearn库,对40个线性可分点进行训练,并绘制出图形画界面. 一.问题引入 如下图所示,在x,y坐标轴上,我们绘制3个点A(1,1),B(2,0),C(2,3 ...

  7. [转]支持向量机SVM总结

    首先,对于支持向量机(SVM)的简单总结: 1. Maximum Margin Classifier 2. Lagrange Duality 3. Support Vector 4. Kernel 5 ...

  8. Python中的支持向量机SVM的使用(有实例)

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn也集成了SVM算法. 一.简要介绍一下sklearn Scik ...

  9. 以图像分割为例浅谈支持向量机(SVM)

    1. 什么是支持向量机?   在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...

随机推荐

  1. Ubuntu复制粘贴快捷键

    复制:[Ctrl+Insert] 粘贴:[Shitf+Insert]

  2. ASP.NET Core技术研究-探秘Host主机启动过程

    当我们将原有ASP.NET 应用程序升级迁移到ASP.NET Core之后,我们发现代码工程中多了两个类Program类和Startup类. 接下来我们详细探秘一下通用主机Host的启动过程. 一.P ...

  3. Ruby学习计划-(0)前言

      前言   接触过的编程语言现在来说有C.C++.Java.Object-C.Swift.这几门语言中最熟悉的就是oc了,毕竟靠他吃饭,对于其他几门语言都是初入门径而已,由于本身一直从事iPhone ...

  4. uCOS-II简介及移植uCOS-II到STM32F103平台详细步骤

    1.参考博客:https://blog.csdn.net/wang328452854/article/details/78486458 2.uCOS(也有人叫uC/OS)由美国人 Jean Labro ...

  5. 基于Taro.js和微信小程序云开发的移动端校园平台——《我的衡师》

    我学校教务处目前仅有电脑端,并不适配移动端,电脑端也只能使用IE6浏览器访问,兼容性差.我在没有api接口的情况下,通过Carles和Postman抓包,用node.js爬虫实现了后台和小程序的对接. ...

  6. API网关--Kong的实践

    1. 什么是Kong 目前互联网后台架构一般是采用微服务,或者类似微服务的形式,应用的请求通常需要访问多个后台系统.如果让每一个后台系统都实现鉴权.限流.负载均衡.审计等基础功能是不合适的,通用的做法 ...

  7. Shell:homework

    1.判断/etc/inittab文件是否大于100行,如果大于,则显示”/etc/inittab is a big file.”否则显示”/etc/inittab is a small file.”# ...

  8. GitHub 热点速览 Vol.15:Background-Matting 让你秒变专业抠图师

    作者:HelloGitHub-小鱼干 摘要:如果要选一个词来概述上周的热点,春风拂过,应该是一个不错的词.新项目像春天冒出的枝芽,朝气蓬勃,虽然获得的 star 不如之前三维 Vim 抢眼,但胜在多姿 ...

  9. 修改Sysvol复制方式

    最近博主在做公司的AD系统升级,首先在做AD系统升级前,一定要认真的调研!!!!在调研是否可升级的过程中 博主发现我司SYSVOL的复制方式还是FRS(没升级前公司是Windows server 20 ...

  10. Bat 脚本学习 (基础篇)

    [转]Bat 脚本学习 2015-01-05 14:13 115人阅读 评论(0) 收藏 举报 基础部分: ============================================== ...