rm(list = ls())
library(car)
library(MASS)
library(openxlsx)
A = read.xlsx("data141.xlsx")
head(A)

  

fm = lm(y~x1+x2+x3+x4 , data=A )
#判断多重共线性
vif(fm)

  

> vif(fm)
x1 x2 x3 x4
38.49621 254.42317 46.86839 282.51286 #具有多重共线性

  

#进行主成分回归
A.pr = princomp(~x1+x2+x3+x4 , data = A,cor=T)
summary(A.pr,loadings = T) #输出特征值和特征向量

  

> summary(A.pr,loadings = T) #输出特征值和特征向量
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.495227 1.2554147 0.43197934 0.0402957285
Proportion of Variance 0.558926 0.3940165 0.04665154 0.0004059364
Cumulative Proportion 0.558926 0.9529425 0.99959406 1.0000000000 Loadings:
Comp.1 Comp.2 Comp.3 Comp.4
x1 0.476 0.509 0.676 0.241
x2 0.564 -0.414 -0.314 0.642
x3 -0.394 -0.605 0.638 0.268
x4 -0.548 0.451 -0.195 0.677

  

pre = predict(A.pr)  #主成分,组合向量,无实际意义
A$z1 = pre[,1]
A$z2 = pre[,2] #根据累积贡献率,根据保留两个主成分变量

  

lm.sol = lm(y~z1 + z2,data = A) #与主成分预测变量线性回归
lm.sol
> lm.sol

Call:
lm(formula = y ~ z1 + z2, data = A) Coefficients:
(Intercept) z1 z2
95.4231 9.4954 -0.1201
> summary(lm.sol)      #模型详细

Call:
lm(formula = y ~ z1 + z2, data = A) Residuals:
Min 1Q Median 3Q Max
-3.3305 -2.1882 -0.9491 1.0998 4.4251 Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 95.4231 0.8548 111.635 < 2e-16 ***
z1 9.4954 0.5717 16.610 1.31e-08 ***
z2 -0.1201 0.6809 -0.176 0.864
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.082 on 10 degrees of freedom
Multiple R-squared: 0.965, Adjusted R-squared: 0.958
F-statistic: 138 on 2 and 10 DF, p-value: 5.233e-08

  

beta = coef(lm.sol)  #主成分分析的预测变量的系数
beta
> beta
(Intercept) z1 z2
95.4230769 9.4953702 -0.1200892

  

#预测变量还原
eigen_vec = loadings(A.pr) #特征向量
x.bar = A.pr$center #均值?
x.sd = A.pr$scale #标准误?
xishu_1 = (beta[2]*eigen_vec[,1])/x.sd
xishu_2 = (beta[3]*eigen_vec[,2])/x.sd
coef = xishu_1 + xishu_2
coef
beta0 = beta[1] - sum(x.bar*coef)
B = c(beta0,coef)
B #还原后的回归系数

  

#岭估计
esti_ling = lm.ridge(y~x1+x2+x3+x4 , data = A, lambda = seq(0,15,0.01))
plot(esti_ling)

  

#取k=5
k = 5
X = cbind(1,as.matrix(A[,2:5]))
y = A[,6]
B_ = solve((t(X)%*%X) + k*diag(5))%*%t(X)%*%y
B_

  

> B_
[,1]
0.06158362
x1 2.12614307
x2 1.16796919
x3 0.71043177
x4 0.49566883

  

R 《回归分析与线性统计模型》page141,5.2的更多相关文章

  1. R语言 线性回归分析实例 《回归分析与线性统计模型》page72

    y,X1,X2,X3 分别表示第 t 年各项税收收入(亿元),某国生产总值GDP(亿元),财政支出(亿元)和商品零售价格指数(%). (1) 建立线性模型: ① 自己编写函数: > librar ...

  2. R WLS矫正方差非齐《回归分析与线性统计模型》page115

    rm(list = ls()) A = read.csv("data115.csv") fm = lm(y~x1+x2,data = A) coef(fm) A.cooks = c ...

  3. R 《回归分析与线性统计模型》page93.6

    rm(list = ls()) #数据处理 library(openxlsx) library(car) library(lmtest) data = read.xlsx("xiti4.xl ...

  4. R 《回归分析与线性统计模型》page164 单变量、多变量多项式模型

    --多项式回归模型 --单变量多项式模型 --多变量多项式模型 rm(list = ls()) library(openxlsx) library(leaps) #单变量多项式模型# data = r ...

  5. R 《回归分析与线性统计模型》page140,5.1

    rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data140.xlsx") ...

  6. R 《回归分析与线性统计模型》page121,4.4

    rm(list = ls()) A = read.xlsx("xiti_4.xlsx",sheet = 4) names(A) = c("ord"," ...

  7. R 《回归分析与线性统计模型》page120,4.3

    #P120习题4.3 rm(list = ls()) A = read.xlsx("xiti_4.xlsx",sheet = 3) names(A) = c("ord&q ...

  8. R 《回归分析与线性统计模型》page119,4.2

    rm(list = ls()) library(openxlsx) library(MASS) data = read.xlsx("xiti_4.xlsx",sheet = 2) ...

  9. R 对数变换 《回归分析与线性统计模型》page103

    BG:在box-cox变换中,当λ = 0时即为对数变换. 当所分析变量的标准差相对于均值而言比较大时,这种变换特别有用.对数据作对数变换常常起到降低数据波动性和减少不对称性的作用..这一变换也能有效 ...

随机推荐

  1. 牛客网Sql

    牛客网Sql: 1.查询最晚入职的员工信息  select * from employees where hire_date =(select max(hire_date) from employee ...

  2. 区间树Splay——[NOI2005]维护数列

    无指针Splay超详细讲解 区间树这玩意真TM玄学. 学这东西你必须要拥有的 1.通过[模板]文艺平衡树(Splay),[模板]普通平衡树,GSS3 - Can you answer these qu ...

  3. CSV文件自动化(自定义参数)

    说明: CSV 文件:cmd_list1.csv testcase:对应test case id function:对应test case的标题 interfacenotes:对应bsp节点名称 cm ...

  4. 六 Spring属性注入的四种方式:set方法、构造方法、P名称空间、SPEL表达式

    Spring的属性注入: 构造方法的属性注入 set方法的属性注入

  5. Python流程控制-3 循环控制

    循环控制,就是让程序循环运行某一段代码直到满足退出的条件,才退出循环. Python用关键字for和while来进行循环控制,但是没有其它语言的do...while语句(在Java和PHP中都有do ...

  6. Java--对象与类(二)

    final 实例域 可以将实例域定义为final.构建对象时必须初始化这样的域.也就是说在一个构造器执行之后,这个域被设置,并且之后无法对其修改 final 修饰符大多应用于基本(primitive) ...

  7. C++ — 后缀表达式转表达式树

    2018-07-21 16:57:26 update 建立表达式树的基本思路:方法类似由下而上建立堆的思想,所以时间复杂度为O(n),这样算法就会变得很简单,只用考虑处理需要入栈的节点和栈中的节点即可 ...

  8. div背景图片自适应

    对背景图片设置属性:background-size:cover;可以实现背景图片适应div的大小. background-size有3个属性: auto:当使用该属性的时候,背景图片将保持100% 的 ...

  9. 学习redis

    https://blog.csdn.net/xiaoyiyz/article/details/60613165 https://bbs.csdn.net/topics/392277304 https: ...

  10. 等级保护2.0-oracle