Nested Segments
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given n segments on a line. There are no ends of some segments that coincide. For each segment find the number of segments it contains.

Input

The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of segments on a line.

Each of the next n lines contains two integers li and ri ( - 109 ≤ li < ri ≤ 109) — the coordinates of the left and the right ends of the i-th segment. It is guaranteed that there are no ends of some segments that coincide.

Output

Print n lines. The j-th of them should contain the only integer aj — the number of segments contained in the j-th segment.

Examples
input

Copy
4
1 8
2 3
4 7
5 6
output

Copy
3
0
1
0
input

Copy
3
3 4
1 5
2 6
output

Copy
0
1
1

题意:一条线上有n条直线,没有两个线段有相同的端点,要求每个线段各自包含了多少线段

下面有2种做法

思路1:

记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点升序排序,从最左边的左端点开始找,
因为左端点升序,所以当前左端点要比所有右端点都小(一开始是满足的,接着我们要不断删去右端点来维护这种状态),当前左端点也比它后面的要小,如果它后面的左端点对应的右端点小于当前右端点,则那条线段是包含在当前线段中的),看当前这个右端点之前有多少个右端点就可知道当前这个线段包含了多少线段
因为我们要保证当前左端点要比所有右端点小才能使得只需统计当前右端点之前有多少右端点就能知道当前这个线段包含了多少线段,如果到了下一个左端点,则上一个线段就不包含在下一个线段中了,因此如果到了下一个左端点就要删掉上一个右端点,所以要删掉当前这个已经找过的右端点

思路2:

记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点降序排序,从最右边的左端点开始找
因为左端点降序排序,所以当前左端点后都没有比它大的未计算过的左端点,如果比它大的左端点被计算过了且那个左端点对应的右端点比现在这个左端点对应的右端点小,则那条线段必定被当前线段包含,所以按左端点降序的顺序添加对应的右端点,可以保证当前没有右端点比当前左端的小

总结:

两种思路的共同点都是要保证当前左端点之前没有比它小的右端点,这样就只需要统计当前左端点对应的右端点之前有多少个右端点就可以知道当前这条线段包含了多少线段,他们的不同点在于思路1是提前把所有的右端的都加进去了,每次查询的时候再删,而思路2是先从最大的左端点开始添加右端点

思路1代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int amn=2e5+;
int bit[amn],n,tp,b[amn];
struct node{
int l,r,id;
} a[amn];
int ans[amn],jg[amn],pos;
map<ll,int> mp;
bool cmp(node a,node b){
if(a.r==b.r)return a.r<b.r;
return a.l<b.l;
}
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i,int x){
while(i<=tp){
bit[i]+=x;
i+=i&-i;
}
}
int main(){
ios::sync_with_stdio();
cin>>n;
tp=;
for(int i=;i<=n;i++){
a[i].id=i; ///记录原始顺序
cin>>a[i].l>>a[i].r;
b[++tp]=a[i].r; ///记录下右端点的坐标
ans[i]=; ///初始化答案数组
}
sort(b+,b++tp); ///给右端点的坐标排序
int mtp=;
for(int i=;i<=tp;i++){
mp[b[i]]=mtp; ///将右端点离散化
mtp++;
}
for(int i=;i<=n;i++){
add(mp[a[i].r],); ///用树状数组维护右端点数量前缀和
}
sort(a+,a++n,cmp); ///给左端点升序排序,从最左边的左端点开始找
for(int i=;i<=n;i++){
ans[a[i].id]=sum(mp[a[i].r]-); ///因为左端点升序,所以当前左端点要比所有未计算过的右端点都小(一开始是满足的,接着我们要不断删去右端点来维护这种状态),当前左端点也比它后面的要小,如果它后面的左端点对应的右端点小于当前右端点,则那条线段是包含在当前线段中的),看当前这个右端点之前有多少个右端点就可知道当前这个线段包含了多少线段
add(mp[a[i].r],-); ///因为我们要保证当前左端点要比所有右端点小才能使得只需统计当前右端点之前有多少右端点就能知道当前这个线段包含了多少线段,如果到了下一个左端点,则上一个线段就不包含在下一个线段中了,因此如果到了下一个左端点就要删掉上一个右端点,所以要删掉当前这个已经找过的右端点
}
for(int i=;i<=n;i++){
printf("%d\n",ans[i]);
}
}
/***
一条线上有n条直线,没有两个线段有相同的端点,要求每个线段各自包含了多少线段
记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点升序排序,从最左边的左端点开始找,
因为左端点升序,所以当前左端点要比所有未计算过的右端点都小(一开始是满足的,接着我们要不断删去右端点来维护这种状态),当前左端点也比它后面的要小,如果它后面的左端点对应的右端点小于当前右端点,则那条线段是包含在当前线段中的),看当前这个右端点之前有多少个右端点就可知道当前这个线段包含了多少线段
因为我们要保证当前左端点要比所有右端点小才能使得只需统计当前右端点之前有多少右端点就能知道当前这个线段包含了多少线段,如果到了下一个左端点,则上一个线段就不包含在下一个线段中了,因此如果到了下一个左端点就要删掉上一个右端点,所以要删掉当前这个已经找过的右端点
***/

思路2代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int amn=2e5+;
int bit[amn],n,tp,b[amn];
struct node{
int l,r,id;
} a[amn];
int ans[amn],jg[amn],pos;
map<ll,int> mp;
bool cmp1(node a,node b){
if(a.r==b.r)return a.r>b.r;
return a.l>b.l;
}
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i,int x){
while(i<=tp){
bit[i]+=x;
i+=i&-i;
}
}
int main(){
ios::sync_with_stdio();
cin>>n;
tp=;
for(int i=;i<=n;i++){
a[i].id=i; ///记录原始顺序
cin>>a[i].l>>a[i].r;
b[++tp]=a[i].r; ///记录下右端点的坐标
ans[i]=; ///初始化答案数组
}
sort(b+,b++tp); ///给右端点的坐标排序
int mtp=;
for(int i=;i<=tp;i++){
mp[b[i]]=mtp; ///将右端点离散化
mtp++;
}
sort(a+,a++n,cmp1); ///给左端点降序排序,从最右边的左端点开始找
for(int i=;i<=n;i++){
add(mp[a[i].r],); ///因为左端点降序排序,所以当前左端点后都没有比它大的未计算过的左端点,如果比它大的左端点被计算过了且那个左端点对应的右端点比现在这个左端点对应的右端点小,则那条线段必定被当前线段包含,所以按左端点降序的顺序添加对应的右端点,可以保证当前没有右端点比当前左端的小
ans[a[i].id]=sum(mp[a[i].r]-);
}
for(int i=;i<=n;i++){ ///两种思路的共同点都是要保证当前左端点之前没有比它小的右端点,这样就只需要统计当前左端点对应的右端点之前有多少个右端点就可以知道当前这条线段包含了多少线段,他们的不同点在于思路1是提前把所有的右端的都加进去了,每次查询的时候再删,而思路2是先从最大的左端点开始添加右端点
printf("%d\n",ans[i]);
}
}
/***
一条线上有n条直线,没有两个线段有相同的端点,要求每个线段各自包含了多少线段
记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点降序排序,从最右边的左端点开始找
因为左端点降序排序,所以当前左端点后都没有比它大的未计算过的左端点,如果比它大的左端点被计算过了且那个左端点对应的右端点比现在这个左端点对应的右端点小,则那条线段必定被当前线段包含,所以按左端点降序的顺序添加对应的右端点,可以保证当前没有右端点比当前左端的小
两种思路的共同点都是要保证当前左端点之前没有比它小的右端点,这样就只需要统计当前左端点对应的右端点之前有多少个右端点就可以知道当前这条线段包含了多少线段,他们的不同点在于思路1是提前把所有的右端的都加进去了,每次查询的时候再删,而思路2是先从最大的左端点开始添加右端点
***/

[离散化+树状数组]CodeForces - 652D Nested Segments的更多相关文章

  1. Code Forces 652D Nested Segments(离散化+树状数组)

     Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

  3. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  4. Ultra-QuickSort(归并排序+离散化树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 50517   Accepted: 18534 ...

  5. CodeForces 652D Nested Segments

    离散化+树状数组 先对坐标离散化,把每条线段结尾所在点标1, 询问某条线段内有几条线段的时候,只需询问这段区间的和是多少,询问结束之后再把这条线段尾部所在点标为0 #include<cstdio ...

  6. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  7. poj-----Ultra-QuickSort(离散化+树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 38258   Accepted: 13784 ...

  8. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. 【bzoj4627】[BeiJing2016]回转寿司 离散化+树状数组

    题目描述 给出一个长度为n的序列,求所有元素的和在[L,R]范围内的连续子序列的个数. 输入 第一行包含三个整数N,L和R,分别表示寿司盘数,满意度的下限和上限. 第二行包含N个整数Ai,表示小Z对寿 ...

随机推荐

  1. MFC中文件对话框类CFileDialog详解及文件过滤器说明

    当前位置 : 首页 » 文章分类 :  开发  »  MFC中文件对话框类CFileDialog详解及文件过滤器说明 上一篇 利用OpenCV从摄像头获得图像的坐标原点是在左下角 下一篇 Word中为 ...

  2. python中使用paramiko模块并实现远程连接服务器执行上传下载

    paramiko模块 paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. 因此,如果需要使用SSH从一个平台连接到另外一个平台,进行一系 ...

  3. STL迭代器的使用、正向、逆向输出双向链表中的所有元素

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  4. 网页程序迁移至微信小程序web-view详解

    小程序现在越来越流行,但是公司的很多项目都是用网页写的,小程序语法不兼容原生网页,使得旧有项目迁移至小程序代价很高: 小程序之前开放了webview功能,可以说是网页应用的一大福音了,但是微信的web ...

  5. React拖拽组件Dragact V0.1.7:教你优化React组件性能与手感

    仓库地址:Dragact手感丝滑的拖拽布局组件 预览地址:支持手机端噢- 上回我们说到,Dragact组件已经进行了一系列的性能优化,然而面对大量数据的时候,依旧比较吃力,让我们来看看,优化之前的Dr ...

  6. SPI总线传输的4种模式

    概述 在芯片的资料上,有两个非常特殊的寄存器配置位,分别是 CPOL (Clock POlarity)和 CPHA (Clock PHAse). CPOL配置SPI总线的极性 CPHA配置SPI总线的 ...

  7. 2.5D地图系统技术方案

    1.    2.5D地图概述 1.1.    概述 2.5维地图就是根据dem.dom.dlg等数据,以及真三维模型在一定高度.视角和灯光效果,按照轴侧投影的方式生成的地图.本文以臻图信息ZTMapE ...

  8. Linux系统系统盘扩容

    在Linux学习过程中,可能会遇到根目录存储空间不足的问题,这时候如果只是新增一块硬盘并挂载到某个目录上,还需要将数据转移至新的硬盘中才能缓解存储压力.这种操作未免有些繁琐,那可不可以直接对跟目录进行 ...

  9. 2019-分享数百个 HT 工业互联网 2D 3D 可视化应用案例分享

    继<分享数百个 HT 工业互联网 2D 3D 可视化应用案例>2018 篇,图扑软件定义 2018 为国内工业互联网可视化的元年后,2019 年里我们与各行业客户进行了更深度合作,拓展了H ...

  10. Hadoop集群搭建(三)~centos6.8网络配置

    安装完centos之后,进入系统,进行网络配置.主要分为五个部分: 修改虚拟机网络编辑器:配置Winodws访问虚拟机:配置centos网卡:通过网络名访问虚拟机配置网络服务. (一)虚拟机网络编辑器 ...