Nested Segments
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given n segments on a line. There are no ends of some segments that coincide. For each segment find the number of segments it contains.

Input

The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of segments on a line.

Each of the next n lines contains two integers li and ri ( - 109 ≤ li < ri ≤ 109) — the coordinates of the left and the right ends of the i-th segment. It is guaranteed that there are no ends of some segments that coincide.

Output

Print n lines. The j-th of them should contain the only integer aj — the number of segments contained in the j-th segment.

Examples
input

Copy
4
1 8
2 3
4 7
5 6
output

Copy
3
0
1
0
input

Copy
3
3 4
1 5
2 6
output

Copy
0
1
1

题意:一条线上有n条直线,没有两个线段有相同的端点,要求每个线段各自包含了多少线段

下面有2种做法

思路1:

记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点升序排序,从最左边的左端点开始找,
因为左端点升序,所以当前左端点要比所有右端点都小(一开始是满足的,接着我们要不断删去右端点来维护这种状态),当前左端点也比它后面的要小,如果它后面的左端点对应的右端点小于当前右端点,则那条线段是包含在当前线段中的),看当前这个右端点之前有多少个右端点就可知道当前这个线段包含了多少线段
因为我们要保证当前左端点要比所有右端点小才能使得只需统计当前右端点之前有多少右端点就能知道当前这个线段包含了多少线段,如果到了下一个左端点,则上一个线段就不包含在下一个线段中了,因此如果到了下一个左端点就要删掉上一个右端点,所以要删掉当前这个已经找过的右端点

思路2:

记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点降序排序,从最右边的左端点开始找
因为左端点降序排序,所以当前左端点后都没有比它大的未计算过的左端点,如果比它大的左端点被计算过了且那个左端点对应的右端点比现在这个左端点对应的右端点小,则那条线段必定被当前线段包含,所以按左端点降序的顺序添加对应的右端点,可以保证当前没有右端点比当前左端的小

总结:

两种思路的共同点都是要保证当前左端点之前没有比它小的右端点,这样就只需要统计当前左端点对应的右端点之前有多少个右端点就可以知道当前这条线段包含了多少线段,他们的不同点在于思路1是提前把所有的右端的都加进去了,每次查询的时候再删,而思路2是先从最大的左端点开始添加右端点

思路1代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int amn=2e5+;
int bit[amn],n,tp,b[amn];
struct node{
int l,r,id;
} a[amn];
int ans[amn],jg[amn],pos;
map<ll,int> mp;
bool cmp(node a,node b){
if(a.r==b.r)return a.r<b.r;
return a.l<b.l;
}
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i,int x){
while(i<=tp){
bit[i]+=x;
i+=i&-i;
}
}
int main(){
ios::sync_with_stdio();
cin>>n;
tp=;
for(int i=;i<=n;i++){
a[i].id=i; ///记录原始顺序
cin>>a[i].l>>a[i].r;
b[++tp]=a[i].r; ///记录下右端点的坐标
ans[i]=; ///初始化答案数组
}
sort(b+,b++tp); ///给右端点的坐标排序
int mtp=;
for(int i=;i<=tp;i++){
mp[b[i]]=mtp; ///将右端点离散化
mtp++;
}
for(int i=;i<=n;i++){
add(mp[a[i].r],); ///用树状数组维护右端点数量前缀和
}
sort(a+,a++n,cmp); ///给左端点升序排序,从最左边的左端点开始找
for(int i=;i<=n;i++){
ans[a[i].id]=sum(mp[a[i].r]-); ///因为左端点升序,所以当前左端点要比所有未计算过的右端点都小(一开始是满足的,接着我们要不断删去右端点来维护这种状态),当前左端点也比它后面的要小,如果它后面的左端点对应的右端点小于当前右端点,则那条线段是包含在当前线段中的),看当前这个右端点之前有多少个右端点就可知道当前这个线段包含了多少线段
add(mp[a[i].r],-); ///因为我们要保证当前左端点要比所有右端点小才能使得只需统计当前右端点之前有多少右端点就能知道当前这个线段包含了多少线段,如果到了下一个左端点,则上一个线段就不包含在下一个线段中了,因此如果到了下一个左端点就要删掉上一个右端点,所以要删掉当前这个已经找过的右端点
}
for(int i=;i<=n;i++){
printf("%d\n",ans[i]);
}
}
/***
一条线上有n条直线,没有两个线段有相同的端点,要求每个线段各自包含了多少线段
记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点升序排序,从最左边的左端点开始找,
因为左端点升序,所以当前左端点要比所有未计算过的右端点都小(一开始是满足的,接着我们要不断删去右端点来维护这种状态),当前左端点也比它后面的要小,如果它后面的左端点对应的右端点小于当前右端点,则那条线段是包含在当前线段中的),看当前这个右端点之前有多少个右端点就可知道当前这个线段包含了多少线段
因为我们要保证当前左端点要比所有右端点小才能使得只需统计当前右端点之前有多少右端点就能知道当前这个线段包含了多少线段,如果到了下一个左端点,则上一个线段就不包含在下一个线段中了,因此如果到了下一个左端点就要删掉上一个右端点,所以要删掉当前这个已经找过的右端点
***/

思路2代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int amn=2e5+;
int bit[amn],n,tp,b[amn];
struct node{
int l,r,id;
} a[amn];
int ans[amn],jg[amn],pos;
map<ll,int> mp;
bool cmp1(node a,node b){
if(a.r==b.r)return a.r>b.r;
return a.l>b.l;
}
int sum(int i){
int s=;
while(i){
s+=bit[i];
i-=i&-i;
}
return s;
}
void add(int i,int x){
while(i<=tp){
bit[i]+=x;
i+=i&-i;
}
}
int main(){
ios::sync_with_stdio();
cin>>n;
tp=;
for(int i=;i<=n;i++){
a[i].id=i; ///记录原始顺序
cin>>a[i].l>>a[i].r;
b[++tp]=a[i].r; ///记录下右端点的坐标
ans[i]=; ///初始化答案数组
}
sort(b+,b++tp); ///给右端点的坐标排序
int mtp=;
for(int i=;i<=tp;i++){
mp[b[i]]=mtp; ///将右端点离散化
mtp++;
}
sort(a+,a++n,cmp1); ///给左端点降序排序,从最右边的左端点开始找
for(int i=;i<=n;i++){
add(mp[a[i].r],); ///因为左端点降序排序,所以当前左端点后都没有比它大的未计算过的左端点,如果比它大的左端点被计算过了且那个左端点对应的右端点比现在这个左端点对应的右端点小,则那条线段必定被当前线段包含,所以按左端点降序的顺序添加对应的右端点,可以保证当前没有右端点比当前左端的小
ans[a[i].id]=sum(mp[a[i].r]-);
}
for(int i=;i<=n;i++){ ///两种思路的共同点都是要保证当前左端点之前没有比它小的右端点,这样就只需要统计当前左端点对应的右端点之前有多少个右端点就可以知道当前这条线段包含了多少线段,他们的不同点在于思路1是提前把所有的右端的都加进去了,每次查询的时候再删,而思路2是先从最大的左端点开始添加右端点
printf("%d\n",ans[i]);
}
}
/***
一条线上有n条直线,没有两个线段有相同的端点,要求每个线段各自包含了多少线段
记录下右端点的坐标,记录下右端点的坐标,将右端点离散化,用树状数组维护右端点数量前缀和,
给左端点降序排序,从最右边的左端点开始找
因为左端点降序排序,所以当前左端点后都没有比它大的未计算过的左端点,如果比它大的左端点被计算过了且那个左端点对应的右端点比现在这个左端点对应的右端点小,则那条线段必定被当前线段包含,所以按左端点降序的顺序添加对应的右端点,可以保证当前没有右端点比当前左端的小
两种思路的共同点都是要保证当前左端点之前没有比它小的右端点,这样就只需要统计当前左端点对应的右端点之前有多少个右端点就可以知道当前这条线段包含了多少线段,他们的不同点在于思路1是提前把所有的右端的都加进去了,每次查询的时候再删,而思路2是先从最大的左端点开始添加右端点
***/

[离散化+树状数组]CodeForces - 652D Nested Segments的更多相关文章

  1. Code Forces 652D Nested Segments(离散化+树状数组)

     Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

  3. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  4. Ultra-QuickSort(归并排序+离散化树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 50517   Accepted: 18534 ...

  5. CodeForces 652D Nested Segments

    离散化+树状数组 先对坐标离散化,把每条线段结尾所在点标1, 询问某条线段内有几条线段的时候,只需询问这段区间的和是多少,询问结束之后再把这条线段尾部所在点标为0 #include<cstdio ...

  6. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  7. poj-----Ultra-QuickSort(离散化+树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 38258   Accepted: 13784 ...

  8. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. 【bzoj4627】[BeiJing2016]回转寿司 离散化+树状数组

    题目描述 给出一个长度为n的序列,求所有元素的和在[L,R]范围内的连续子序列的个数. 输入 第一行包含三个整数N,L和R,分别表示寿司盘数,满意度的下限和上限. 第二行包含N个整数Ai,表示小Z对寿 ...

随机推荐

  1. 使用Google BBR加速 VPS

    0X00 预备知识 在使用Google BBR之前,我们首先要了解它是什么. 了解计算机网络的人都知道,在TCP连接中,由于需要维持连接的可靠性,引入了拥塞控制和流量管理的方法.Google BBR就 ...

  2. c#或者C#.net中的“ToolTip”是“System.Windows.Forms.ToolTip”和“DevComponents.DotNetBar.ToolTip”之间的不明确的引用

    “ToolTip”是“System.Windows.Forms.ToolTip”和“DevComponents.DotNetBar.ToolTip”之间的不明确的引用 ,在编程时,有时候会编译出现不明 ...

  3. python爬虫所遇问题列举

    1.通过python socket库来构造请求报文,向服务器发送图片请求时 (1)图片在浏览器请求头中的remote address信息跟通过python socket输出远程连接地址和端口号不一致 ...

  4. springDataJPA笔记

    springDataJPA笔记 第一 orm思想 主要目的:操作实体类就相当于操作数据库表 建立两个映射关系: 实体类和表的映射关系 实体类中属性和表中字段的映射关系 不再重点关注:sql语句 实现了 ...

  5. Python基本小程序

    目录 Python基本小程序 一.筛选从1-100所有的奇数 二.筛选从0-100所有的偶数 三.求1-100之间所有的偶数和,奇数和 四.三个数由小到大输出 五.四个数字重复数字的三位数 Pytho ...

  6. js实现文字头像的生成

    原文地址:https://www.phyer.cn/article/9277.欢迎大家访问我的博客(●ˇ∀ˇ●) 使用canvas画出文字就好啦 function gen_text_img(size, ...

  7. javascript设计模式--策略模式

    javascript策略模式总结 1.什么是策略模式? 策略模式的定义是:定义一系列的算法,把他们独立封装起来,并且可以相互替换. 例如我们需要写一段代码来计算员工的奖金.当绩效为a时,奖金为工资的5 ...

  8. scroll-view组件bindscroll实例应用:自定义滚动条

    我们知道scroll-view组件作为滑动控件非常好用,而有时候我们想放置一个跟随滚动位置来跟进的滚动条,但又不想用滚动条api该怎么办呢?(当然是自己写一个呗还能怎么办[自黑冷漠脸])嗯,没错.自己 ...

  9. WinPcap vs Npcap

    1.两者都一直有人在维护,而并不是nmap官网介绍的已经停止维护了,https://nmap.org/npcap/vs-winpcap.html 2.Wireshark默认使用WinPcap,他无法抓 ...

  10. BTrace实战

    BTrace在解决现场问题的时候非常有用. 1.概述 1.1下载 https://github.com/btraceio/btrace,最新版本是1.3.9 目前1.3.x系列最低支持JDK1.7,要 ...