===================BETA RELEASE FEATRURE LIST====================

1. Log in and account manager for every user: private for every user.

2. Good UI design and comfortable users' experience: running smoothly and apply for the latest IOS9.

3. Personal photo search: give a txt query (words/sentences) and return the related photos.

4. Personal voice photo search: speech a word or a sentence and return the related photos.

5. Personal photo event segmantation: once you upload your photos, they will be classified according to the event automatically.

6. Personal photo qulity fiter: when you have some photos which is very similar and they contain the same informantion, they will be de-dulicated. If the photos have low quality, they will be removed.

7. Personal photo time and location filter: you can filter your photos according to the time or the GPS information.

8. Process remainder: The process will be displayed and you can check it anytime.

9. Personal photo tagging: the photos will be tagged according to their content automatically.

============================================================

================BEAT RELEASE PERFORMANCE STANDARD================

1. Parallel performance test: The Number of the simultaneous users should be more than 100, and the search result should be return in 3 second.

2. Search performance test: The relevance between the query and the return results accuracy should be more than 60%. Because our CNN model is the AlexNet which the performance upbound is 57.41%.

3. photo quality satisfication:  the score provided by the users according to the How they are satisified with the photo quality. It is divided into 5 ranks. And the user will give the socre of our ALPHA release about the photo quality and de-duplicate feature performance. The final average score result should be more than 4.

4. User experience satisfication: the score provided by the users according to the How they are satisified with the UI design. It is divided into 5 ranks, And the user will give the score of our product about the UI experience. The final average score results should be more than 4.

5. Voice Search test:

1). The voice return words test: for 50 users, let they read some sentence and return words should be hited at least 80%.

2). The NLP extract key words test: the NLP model should extract the key words as the query at leaset 80% when we give the groundtruth.

3). User satisfication test: the score provied by the users according to the degree they feel comfortable when they use the voice search. It is divided into 5 ranks, and the user will give the score. The final average score should more than 4.

============================================================

===================BEAT RELEASE TEST PALN========================

The unit tests will be devided into 4 parts with some test scripts :

1. Search framework test: our search framework is based on the ConSE [1].

we will test the following 3 things:

1). Words coverage rates: give a wordlist and test the hit rate.

2). Stability: whether give some words it will crash or not.

3). Speed: for each query, we will test the return time.

2. NLP mode test: our NLP is based on the stanford API.

we will test the following 2 things:

1). Extract key words accuracy: give a groundtruth and test the hit accuracy.

2). Stability:whether give some words it will crash or not.

3. Voice mode test: our Voice is based on the Oxford API:

we will test the following 2 things:

1). Translation accuracy: users read the sentence and we check the translation from voice sigal to txt accuracy.

2). Stability:whether read some words it will crash or not.

4. Azure server test:

we will deploy our project to the Azure server. The test process will be devided into 3 parts:

1).  Parallel performance test.

2).  loading ability test.

3).  Stability: long time running and no serious bug.

============================================================

Reference:

[1]. M. Norouzi and T. Mikolov. Zero-Shot Learning by Convex Combination of Semantic Embeddings

Feature list, Standard and Test plan for BETA Release 12/22/2015的更多相关文章

  1. Performance standard (ALPHA release) 12/17/2015

    ===================ALPHA RELEASE STANDARD====================== 1. Parallel performance test: The Nu ...

  2. Codeforces Beta Round #12 (Div 2 Only)

    Codeforces Beta Round #12 (Div 2 Only) http://codeforces.com/contest/12 A 水题 #include<bits/stdc++ ...

  3. stand up meeting for beta release plan 12/16/2015

    今天我们开会讨论一下beta版需要的feature,其中待定的feature是可选做的,如果有时间.其他都是必须实现的. 因为做插件的计划失败了,所以我们现在是pdf阅读器和取词查词加入生词本这两部分 ...

  4. ASP.NET5,MVC 6,Beta 7与VS 2015 RTM的兼容问题

    温馨提示:本文杂而乱,最终不知所云. Visual Studio 2015 RTM已经于2015年7月20号正式发布,我也在第一时间下载安装了起来. 虽然在5月份就开始使用RC版本,但是还是很期待正式 ...

  5. Codeforces Beta Round #12 (Div 2 Only) D. Ball sort/map

    D. Ball Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/problem/12/D D ...

  6. 团队作业7——第二次项目冲刺(Beta版本12.06)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:队员每个人提出对接下来需要做的事情的看法和意见,将需要做的任务更新到了leangoo中进行管理,产品完成了界面优化的设计,测试复现了之前 ...

  7. 团队作业7——第二次项目冲刺(Beta版本12.08)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:完成了排行榜的测试.上传头像功能的原型设计.界面优化 计划完成的内容:上传头像功能开发.测试.头像裁剪原型设计 每个人的工作 (有wor ...

  8. 团队作业7——第二次项目冲刺(Beta版本12.10)

    项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:头像功能原型设计.头像裁剪功能.头像上传功能.测试 计划完成的内容:头像功能测试.bug修复 每个人的工作 (有work item 的I ...

  9. 团队作业7——第二次项目冲刺(Beta版本12.08-12.10)

    1.当天站立式会议照片 本次会议内容:1:每个人汇报自己完成的工作.2:组长分配各自要完成的任务. 2.每个人的工作 黄进勇:项目整合,后台代码. 李勇:前台界面优化. 何忠鹏:数据库模块. 郑希彬: ...

随机推荐

  1. python3 open txt的UnicodeDecodeError: 'gbk' codec问题解决方案

    python3 open txt的UnicodeDecodeError: 'gbk' codec问题解决方案先直截了当给出解决方案,在程序开头加上:import _locale_locale._get ...

  2. 解决使用requests_html模块,req.html.render()下载chromium速度慢问题

    1.第一步,代码如下: from requests_html import HTMLSession url="https://www.baidu.com/" headers={ & ...

  3. LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria

    题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...

  4. ElasticSearch 倒排索引

    倒排索引 倒排表以字或词为关键字进行索引,表中关键字所对应的记录表项记录了出现这个字或词的所有文档,一个表项就是一个字表段,它记录该文档的ID和字符在该文档中出现的位置情况. 由于每个字或词对应的文档 ...

  5. mabatis入门五 高级结果映射

    一.创建测试的表和数据 1.创建表 1CREATE TABLE items ( 2 id INT NOT NULL AUTO_INCREMENT, 3 itemsname VARCHAR(32) NO ...

  6. Ubuntu+Hexo+Github搭建个人博客

    Ubuntu+Hexo+Github搭建个人博客 目录 目录 目录 1. 简介 环境 2. Git安装及配置 2.1 安装Git 2.2 创建Git仓库 2.3 配置git仓库 2.4 添加公钥 3. ...

  7. A - Jessica's Reading Problem POJ - 3320 尺取

    A - Jessica's Reading Problem POJ - 3320 Jessica's a very lovely girl wooed by lots of boys. Recentl ...

  8. PTA 7-42 整型关键字的散列映射(手写哈希表的线性探测法)

    本题考点: 整型哈希表的线性探测法 给定一系列整型关键字和素数P,用除留余数法定义的散列函数将关键字映射到长度为P的散列表中.用线性探测法解决冲突. 输入格式: 输入第一行首先给出两个正整数N(≤10 ...

  9. Flask 和Django

    软件系统发展到今天已经很复杂了,在服务端软件,设计的知识很广泛,为了降低开发难度,提高开发效率,在某些方面去使用别人成熟的框架. 一些事务处理,安全性,数据流控制等都可以让框架处理,而开发人员把更多的 ...

  10. .NET Core项目部署到Linux(Centos7)(七)启动和停止.NET Core项目

    目录 1.前言 2.环境和软件的准备 3.创建.NET Core API项目 4.VMware Workstation虚拟机及Centos 7安装 5.Centos 7安装.NET Core环境 6. ...