Feature list, Standard and Test plan for BETA Release 12/22/2015
===================BETA RELEASE FEATRURE LIST====================
1. Log in and account manager for every user: private for every user.
2. Good UI design and comfortable users' experience: running smoothly and apply for the latest IOS9.
3. Personal photo search: give a txt query (words/sentences) and return the related photos.
4. Personal voice photo search: speech a word or a sentence and return the related photos.
5. Personal photo event segmantation: once you upload your photos, they will be classified according to the event automatically.
6. Personal photo qulity fiter: when you have some photos which is very similar and they contain the same informantion, they will be de-dulicated. If the photos have low quality, they will be removed.
7. Personal photo time and location filter: you can filter your photos according to the time or the GPS information.
8. Process remainder: The process will be displayed and you can check it anytime.
9. Personal photo tagging: the photos will be tagged according to their content automatically.
============================================================
================BEAT RELEASE PERFORMANCE STANDARD================
1. Parallel performance test: The Number of the simultaneous users should be more than 100, and the search result should be return in 3 second.
2. Search performance test: The relevance between the query and the return results accuracy should be more than 60%. Because our CNN model is the AlexNet which the performance upbound is 57.41%.
3. photo quality satisfication: the score provided by the users according to the How they are satisified with the photo quality. It is divided into 5 ranks. And the user will give the socre of our ALPHA release about the photo quality and de-duplicate feature performance. The final average score result should be more than 4.
4. User experience satisfication: the score provided by the users according to the How they are satisified with the UI design. It is divided into 5 ranks, And the user will give the score of our product about the UI experience. The final average score results should be more than 4.
5. Voice Search test:
1). The voice return words test: for 50 users, let they read some sentence and return words should be hited at least 80%.
2). The NLP extract key words test: the NLP model should extract the key words as the query at leaset 80% when we give the groundtruth.
3). User satisfication test: the score provied by the users according to the degree they feel comfortable when they use the voice search. It is divided into 5 ranks, and the user will give the score. The final average score should more than 4.
============================================================
===================BEAT RELEASE TEST PALN========================
The unit tests will be devided into 4 parts with some test scripts :
1. Search framework test: our search framework is based on the ConSE [1].
we will test the following 3 things:
1). Words coverage rates: give a wordlist and test the hit rate.
2). Stability: whether give some words it will crash or not.
3). Speed: for each query, we will test the return time.
2. NLP mode test: our NLP is based on the stanford API.
we will test the following 2 things:
1). Extract key words accuracy: give a groundtruth and test the hit accuracy.
2). Stability:whether give some words it will crash or not.
3. Voice mode test: our Voice is based on the Oxford API:
we will test the following 2 things:
1). Translation accuracy: users read the sentence and we check the translation from voice sigal to txt accuracy.
2). Stability:whether read some words it will crash or not.
4. Azure server test:
we will deploy our project to the Azure server. The test process will be devided into 3 parts:
1). Parallel performance test.
2). loading ability test.
3). Stability: long time running and no serious bug.
============================================================
Reference:
[1]. M. Norouzi and T. Mikolov. Zero-Shot Learning by Convex Combination of Semantic Embeddings
Feature list, Standard and Test plan for BETA Release 12/22/2015的更多相关文章
- Performance standard (ALPHA release) 12/17/2015
===================ALPHA RELEASE STANDARD====================== 1. Parallel performance test: The Nu ...
- Codeforces Beta Round #12 (Div 2 Only)
Codeforces Beta Round #12 (Div 2 Only) http://codeforces.com/contest/12 A 水题 #include<bits/stdc++ ...
- stand up meeting for beta release plan 12/16/2015
今天我们开会讨论一下beta版需要的feature,其中待定的feature是可选做的,如果有时间.其他都是必须实现的. 因为做插件的计划失败了,所以我们现在是pdf阅读器和取词查词加入生词本这两部分 ...
- ASP.NET5,MVC 6,Beta 7与VS 2015 RTM的兼容问题
温馨提示:本文杂而乱,最终不知所云. Visual Studio 2015 RTM已经于2015年7月20号正式发布,我也在第一时间下载安装了起来. 虽然在5月份就开始使用RC版本,但是还是很期待正式 ...
- Codeforces Beta Round #12 (Div 2 Only) D. Ball sort/map
D. Ball Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/problem/12/D D ...
- 团队作业7——第二次项目冲刺(Beta版本12.06)
项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:队员每个人提出对接下来需要做的事情的看法和意见,将需要做的任务更新到了leangoo中进行管理,产品完成了界面优化的设计,测试复现了之前 ...
- 团队作业7——第二次项目冲刺(Beta版本12.08)
项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:完成了排行榜的测试.上传头像功能的原型设计.界面优化 计划完成的内容:上传头像功能开发.测试.头像裁剪原型设计 每个人的工作 (有wor ...
- 团队作业7——第二次项目冲刺(Beta版本12.10)
项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:头像功能原型设计.头像裁剪功能.头像上传功能.测试 计划完成的内容:头像功能测试.bug修复 每个人的工作 (有work item 的I ...
- 团队作业7——第二次项目冲刺(Beta版本12.08-12.10)
1.当天站立式会议照片 本次会议内容:1:每个人汇报自己完成的工作.2:组长分配各自要完成的任务. 2.每个人的工作 黄进勇:项目整合,后台代码. 李勇:前台界面优化. 何忠鹏:数据库模块. 郑希彬: ...
随机推荐
- 《HelloGitHub》第 48 期
兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...
- 金融和IT的区别
在进入金融圈之前, 我写了十五年的代码, 在San Francisco Bay Area(也就是中国人所说的硅谷)工作过两三年. 去年因为Fintech和香港.NET俱乐部的缘故, 我接触了私人银行和 ...
- Contest 161
2019-11-03 20:35:18 总体感受:本周的赛题完全是反过来的,第一题最难,第二题次之,最后的hard反而是最简单的. 注意点:心态放平稳,慢慢来.
- spring-cloud-gateway过滤器实践
概述 这里是 SpringCloud Gateway 实践的第一篇,主要讲过滤器的相关实现.Spring-Cloud-Gateway 是以 WebFlux 为基础的响应式架构设计, 是异步非阻塞式的, ...
- 怎样设计最优的卷积神经网络架构?| NAS原理剖析
虽然,深度学习在近几年发展迅速.但是,关于如何才能设计出最优的卷积神经网络架构这个问题仍在处于探索阶段. 其中一大部分原因是因为当前那些取得成功的神经网络的架构设计原理仍然是一个黑盒.虽然我们有着关于 ...
- [Jenkins01] Jenkins的安装和部署(jenkins教程)
一.jenkins的下载.安装以及环境的搭建部署. 1.什么是jenkins以及它的作用: Jenkins 是一个可扩展的持续集成(CI)平台.它只是一个平台,真正运作的都是插件. Jenkins的主 ...
- coding++:高并发解决方案限流技术-使用RateLimiter实现令牌桶限流-Demo
RateLimiter是guava提供的基于令牌桶算法的实现类,可以非常简单的完成限流特技,并且根据系统的实际情况来调整生成token的速率. 通常可应用于抢购限流防止冲垮系统:限制某接口.服务单位时 ...
- .NET Core技术研究-中间件的由来和使用
我们将原有ASP.NET应用升级到ASP.NET Core的过程中,会遇到一个新的概念:中间件. 中间件是ASP.NET Core全新引入的概念.中间件是一种装配到应用管道中以处理请求和响应的软件. ...
- gold 30 mins
- python基础学习-字符串常见操作
字符串常见操作 索引 s = "abcdefg" # 字符串数据,切片后取出的数据都是字符串类型 # 从左至右取值:从0开始 # 从右向左取值:从-1开始 print(" ...