HMM-前向后向算法
基本要素
状态 \(N\)个
状态序列 \(S = s_1,s_2,...\)
观测序列 \(O=O_1,O_2,...\)
\(\lambda(A,B,\pi)\)
- 状态转移概率 \(A = \{a_{ij}\}\)
- 发射概率 \(B = \{b_{ik}\}\)
- 初始概率分布 \(\pi = \{\pi_i\}\)
观测序列生成过程
- 初始状态
- 选择观测
- 状态转移
- 返回step2
HMM三大问题
- 概率计算问题(评估问题)
给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),计算 \(P(O|\lambda)\),即计算观测序列的概率
- 解码问题
给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),找到对应的状态序列 \(S\)
- 学习问题
给定观测序列 \(O=O_1O_2...O_T\),找到模型参数 \(\lambda (A,B,\pi)\),以最大化 \(P(O|\lambda)\),
概率计算问题
给定模型 \(\lambda\) 和观测序列 \(O\),如何计算\(P(O| \lambda)\)?
暴力枚举每一个可能的状态序列 \(S\)
对每一个给定的状态序列
\[P(O|S,\lambda) = \prod^T_{t=1} P(O_t|s_t,\lambda) =\prod^T_{t=1} b_{s_tO_t}
\]一个状态序列的产生概率
\[P(S|\lambda) = P(s_1)\prod^T_{t=2}P(s_t|s_{t-1})=\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}
\]联合概率
\[P(O,S|\lambda) = P(S|\lambda)P(O|S,\lambda) =\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}\prod^T_{t=1} b_{s_tO_t}
\]考虑所有的状态序列
\[P(O|\lambda)=\sum_S\pi_1b_{s_1O_1}\prod^T_{t=2}a_{s_{t-1}s_t}b_{s_tO_t}
\]
\(O\) 可能由任意一个状态得到,所以需要将每个状态的可能性相加。
这样做什么问题?时间复杂度高达 \(O(2TN^T)\)。每个序列需要计算 \(2T\) 次,一共 \(N^T\) 个序列。
前向算法
在时刻 \(t\),状态为 \(i\) 时,前面的时刻观测到 \(O_1,O_2, ..., O_t\) 的概率,记为 \(\alpha _i(t)\) :
\]
当 \(t=1\) 时,输出为 \(O_1\),假设有三个状态,\(O_1\) 可能是任意一个状态发出,即
\]
当 \(t=2\) 时,输出为 \(O_1O_2\) ,\(O_2\) 可能由任一个状态发出,同时产生 \(O_2\) 对应的状态可以由 \(t=1\) 时刻任意一个状态转移得到。假设 \(O_2\) 由状态 1
发出,如下图
\]
同理可得 \(\alpha_2(2),\alpha_3(2)\)
\]
所以
\]
所以前向算法过程如下:
step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)
step2:计算 \(\alpha(t) = (\sum^{N}_{i=1} \alpha_i(t-1)a_{ij})b_j(O_{t})\)
step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i(t)\)
相比暴力法,时间复杂度降低了吗?
当前时刻有 \(N\) 个状态,每个状态可能由前一时刻 \(N\) 个状态中的任意一个转移得到,所以单个时刻的时间复杂度为 \(O(N^2)\),总时间复杂度为 \(O(TN^2)\)
后向算法
在时刻 \(t\),状态为 \(i\) 时,观测到 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率,记为 \(\beta _i(t)\) :
\]
当 \(t=T\) 时,由于 \(T\) 时刻之后为空,没有观测,所以 \(\beta_i(t)=1\)
当 \(t = T-1\) 时,观测 \(O_T\) ,\(O_T\) 可能由任意一个状态产生
\]
当 \(t=1\) 时,观测为 \(O_{2},O_{3}, ..., O_T\)
\]
所以
\]
后向算法过程如下:
step1:初始化 \(\beta_i(T=1)\)
step2:计算 \(\beta_i(t) = \sum^N_{j=1}a_{ij}b_j(O_{t+1})\beta_j(t+1)\)
step3:\(P(O|\lambda) = \sum^N_{i=1}\pi_ib_i(O_1)\beta_i(1)\)
- 时间复杂度 \(O(N^2T)\)
前向-后向算法
回顾前向、后向变量:
- \(a_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_1,O_2, ..., O_t\) 的概率
- \(\beta_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率
\]
即在给定的状态序列中,\(t\) 时刻状态为 \(i\) 的概率。
使用前后向算法可以计算隐状态,记 \(\gamma_i(t) = P(s_t=i|O,\lambda)\) 表示时刻 \(t\) 位于隐状态 \(i\) 的概率
\]
\]
未完待续。。。
Decoder
维特比算法
维特比算法的基础可以概括为下面三点(来源于吴军:数学之美):
1、如果概率最大的路径经过篱笆网络的某点,则从开始点到该点的子路径也一定是从开始到该点路径中概率最大的。
2、假定第i时刻有k个状态,从开始到i时刻的k个状态有k条最短路径,而最终的最短路径必然经过其中的一条。
3、根据上述性质,在计算第i+1状态的最短路径时,只需要考虑从开始到当前的k个状态值的最短路径和当前状态值到第i+1状态值的最短路径即可,如求t=3时的最短路径,等于求t=2时的所有状态结点x2i的最短路径加上t=2到t=3的各节点的最短路径。
references:
[1] https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
[2] https://www.cnblogs.com/skyme/p/4651A331.html
[3] https://www.cnblogs.com/sjjsxl/p/6285629.html
[4] https://hmmlearn.readthedocs.io/en/latest/tutorial.html
[5] https://blog.csdn.net/xueyingxue001/article/details/52396494
[6] https://blog.csdn.net/hudashi/java/article/details/87875259
[7] https://www.zhihu.com/question/20136144
[8] https://blog.csdn.net/v_JULY_v/article/details/81708386
[9] https://blog.csdn.net/u014688145/article/details/53046765
HMM-前向后向算法的更多相关文章
- HMM 前向后向算法(转)
最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码 ...
- HMM 自学教程(七)前向后向算法
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 条件随机场CRF(二) 前向后向算法评估标记序列概率
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模 ...
- 《统计学习方法》P179页10.22前向后向算法公式推导
- 隐马尔可夫(HMM)、前/后向算法、Viterbi算法
HMM的模型 图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下 ...
- 隐马尔可夫模型HMM与维特比Veterbi算法(一)
隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔 ...
- HMM-前向后向算法(附python实现)
基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,...\) \(\lambda(A,B,\pi)\) 状态转移概率 \(A = \{a ...
- HMM-前向后向算法(附代码)
目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...
随机推荐
- python实现双向链表的操作
双向链表 双向链表又叫做双链表,每个节点有两个指针域和一个数据域.prev指针域指向前一个节点,next指针域指向下一个节点.注意,第一个节点的prev指针域指向空值,最后一个节点的next域也是指向 ...
- Mac os Pycharm 中使用Stanza进行实体识别(自然语言处理nlp)
stanza 是斯坦福开源Python版nlp库,对自然语言处理有好大的提升,具体好在哪里,官网里面都有介绍,这里就不翻译了.下面放上对应的官网和仓库地址. stanza 官网地址:点击我进入 sta ...
- cmd命令行中查看、修改、删除与添加环境变量
注意:只在当前窗口生效!! 1.查看当前所有可用的环境变量:输入 set 即可查看. set 2.查看某个环境变量:输入 “set 变量名”即可 set python 3.修改环境变量 :输入 “se ...
- 【翻译】TensorFlow卷积神经网络识别CIFAR 10Convolutional Neural Network (CNN)| CIFAR 10 TensorFlow
原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, ...
- Springboot:异步业务处理(十二)
说明 当正常业务处理调用一个复杂业务或者耗时较长的请求时,客户等待时间会比较长,造成不好的用户体验,所以这时候需要用的异步处理 构建一个群发邮件的service接口及实现(模拟) 接口:com\spr ...
- 异常体系结构 throwable
package com.yhqtv.demo01Exception; /* * 一.异常体系结构 *java.lang.Throwable * ------java.lang.Error:一般不编写针 ...
- 是时候学习python了
“ 学习Pyhton,如何学以致用 -- 知识往问题靠,问题往知识靠” 01 为什么学Python 一直有听说Python神奇,总是想学,虽然不知道为啥.奈何每天写bug,修bug忙得不亦乐乎,总是不 ...
- 为何 UNIX 时间 0, 有时显示是1970年1月1日,有时显示是1969年12月31日
by Rachael Arnold http://www.rachaelarnold.com/dev/archive/why-is-date-returning-wrong Demystifying ...
- 【Linux网络基础】网络拓扑、OSI层次模型、TCP/IP协议簇
一.前言 一个运维有时也要和网络打交道,所以具备最基本的网络知识,对一个运维人员来说是必要的.但,对于我们的工作来说这些并不是重点,因此,我不可能从最基础的网络知识开始讲起.本节内容更多是从一个梳理和 ...
- 对话Roadstar投资人:一家自动驾驶公司之死(三)
...
11. Roadstar 如何收场? 雷锋网:你觉得 Roadstar 造成今天这样的局面,是什么导致的? 投资人代表 1:刚才我们也数次表达了,在每个人身上,可能每个人的诉求,不能达到同步,与公司的 ...