卷积神经网络---padding、 pool、 Activation layer
#coding:utf-8
import tensorflow as tf
tf.reset_default_graph()
image = tf.random_normal([1, 112, 96, 3])
in_channels = 3
out_channels = 32
kernel_size = 5
conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_channels], stddev=0.1,
dtype=tf.float32)) print 'image shape', image.get_shape()
print 'conv weight shape', conv_weight.get_shape()
bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='SAME')
conv = tf.nn.bias_add(conv, bias)
print 'conv output shape with SAME padded', conv.get_shape() conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='VALID')
conv = tf.nn.bias_add(conv, bias)
print 'conv output shape with VALID padded', conv.get_shape() '''
两种padding方式的不同
SAME 简而言之就是丢弃,像素不够的时候对那部分不进行卷积,输出图像的宽高计算公式如下(向上取整,进1):
HEIGHT = ceil(float(in_height)/float(strides[1]))
WIDTH = ceil(float(in_width)/float(strides[2])) VALID 简而言之就是补全,像素不够的时候补0,输出图像的宽高计算公式如下
HEIGHT = ceil(float(in_height - filter_height + 1)/float(strides[1]))
WIDTH = ceil(float(in_width - filter_width + 1)/float(strides[2]))
'''
打印结果
image shape (1, 112, 96, 3)
conv weight shape (5, 5, 3, 32)
conv output shape with SAME padded (1, 38, 32, 32)
conv output shape with VALID padded (1, 36, 31, 32)
pool_size = 3
pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='SAME')
print pool.get_shape()
pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='VALID')
print pool.get_shape()
结果
(1, 18, 16, 32)
(1, 17, 15, 32)
#激活层
relu = tf.nn.relu(pool)
print relu.get_shape()
l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
def prelu(x, name = 'prelu'):
with tf.variable_scope(name):
alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.25), regularizer=l2_regularizer, dtype=
tf.float32)
pos = tf.nn.relu(x)
neg = tf.multiply(alphas, (x - abs(x)) * 0.5)
return pos + neg
prelu_out = prelu(pool)
print prelu_out.get_shape()
卷积神经网络---padding、 pool、 Activation layer的更多相关文章
- YJango的卷积神经网络——介绍
原文地址:https://zhuanlan.zhihu.com/p/27642620 如果要提出一个新的神经网络结构,首先就需要引入像循环神经网络中“时间共享”这样的先验知识,降低学习所需要的训练数据 ...
- 卷积神经网络之LeNet
开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构 ...
- 简单的卷积神经网络(CNN)的搭建
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.与普通神经网络非常相 ...
- paper 162:卷积神经网络(CNN)解析
卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer ...
- 第二次作业:卷积神经网络 part 1
第二次作业:卷积神经网络 part 1 视频学习 数学基础 受结构限制严重,生成式模型效果往往不如判别式模型. RBM:数学上很漂亮,且有统计物理学支撑,但主流深度学习平台不支持RBM和预训练. 自编 ...
- 卷积神经网络学习笔记——Siamese networks(孪生神经网络)
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 在整理这些知识点之前,我 ...
- 卷积神经网络学习笔记——SENet
完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SE ...
- 深度学习基础-基于Numpy的卷积神经网络(CNN)实现
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...
- 卷积神经网络CNN与深度学习常用框架的介绍与使用
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器 ...
随机推荐
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-text-width
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- Python 异常处理(Try...Except)
版权所有,未经许可,禁止转载 章节 Python 介绍 Python 开发环境搭建 Python 语法 Python 变量 Python 数值类型 Python 类型转换 Python 字符串(Str ...
- 第二周的java
- app页面连接到服务器的数据库
第一步在服务器上写好servlet用于和数据库交互,目前我只写了添加. 第二步app端使用HttpURLConnection连接交互. 效果图: 增加了一条数据:第十一条
- Linux Shell编程case语句
http://blog.csdn.net/dreamtdp/article/details/8048720 case语句适用于需要进行多重分支的应用情况. case分支语句的格式如下: case $变 ...
- .NET CORE AutoMapper使用
1.通过nuget安装AutoMapper,版本是7.0.1, 安装AutoMapper.Extensions.Microsoft.DependencyInjection 版本是4.0.1 不是以上 ...
- 二十一、CI框架之MCV
一.我们在M模型文件里面添加一个文件,代码如下: 二.在C控制器中加载模型,并调用模型函数,输出达到View,控制器代码如下: 三.在View里面输出控制器传过来的参数 四.显示效果如下: 五.我们对 ...
- ACM&OI 基础数论算法专题
ACM&OI 基础数学算法专题 一.数论基础 质数及其判法 (已完结) 质数的两种筛法 (已完结) 算数基本定理与质因数分解 (已完结) 约数与整除 (已完结) 整除分块 (已完结) 最大公约 ...
- linux服务重启命令
/etc/init.d/sshd restart/etc/init.d/sshd reload systemctl status sshd.servicesystemctl restart sshd. ...
- Android进阶——多线程系列之异步任务AsyncTask的使用与源码分析
AsyncTask是一种轻量级的异步任务类,它可以在线程池中执行后台任务,然后把执行的进度和最终结果传递给主线程并主线程中更新UI,通过AsyncTask可以更加方便执行后台任务以及在主线程中访问UI ...