LeetCode——1305. 两棵二叉搜索树中的所有元素
给你 root1 和 root2 这两棵二叉搜索树。
请你返回一个列表,其中包含 两棵树 中的所有整数并按 升序 排序。.
示例 1:

输入:root1 = [2,1,4], root2 = [1,0,3]
输出:[0,1,1,2,3,4]
示例 2:
输入:root1 = [0,-10,10], root2 = [5,1,7,0,2]
输出:[-10,0,0,1,2,5,7,10]
示例 3:
输入:root1 = [], root2 = [5,1,7,0,2]
输出:[0,1,2,5,7]
示例 4:
输入:root1 = [0,-10,10], root2 = []
输出:[-10,0,10]
示例 5:

输入:root1 = [1,null,8], root2 = [8,1]
输出:[1,1,8,8]
提示:
每棵树最多有 5000 个节点。
每个节点的值在 [-10^5, 10^5] 之间。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/all-elements-in-two-binary-search-trees
方法一:遍历 + 排序
我们可以想到的最简单的方法是,对两棵树进行任意形式的遍历(深度优先搜索、广度优先搜索、前序遍历、中序遍历、后序遍历),并将遍历到的所有元素放入一个数组中,最后对这个数组进行排序即可。
C++
class Solution {
public:
void dfs(TreeNode* node, vector<int>& ans) {
if (!node) {
return;
}
ans.push_back(node->val);
dfs(node->left, ans);
dfs(node->right, ans);
}
vector<int> getAllElements(TreeNode* root1, TreeNode* root2) {
vector<int> ans;
dfs(root1, ans);
dfs(root2, ans);
sort(ans.begin(), ans.end());
return ans;
}
};
Python
class Solution:
def getAllElements(self, root1: TreeNode, root2: TreeNode) -> List[int]:
ans = list()
def dfs(node):
if not node:
return
ans.append(node.val)
dfs(node.left)
dfs(node.right)
dfs(root1)
dfs(root2)
ans.sort()
return ans
复杂度分析
时间复杂度:O((M+N)log(M+N)),其中 M 和 N 是两棵树中的节点个数。
空间复杂度:O(H_M + H_N + log(M + N)),其中 H_M 和 H_N是两棵树的高度,这里只计算除了存储答案的数组以外需要的额外空间。上面给出的代码使用深度优先搜索对两棵树进行遍历,需要 O(H_M + H_N)的栈空间;在对数组进行排序时,需要log(M+N) 的栈空间。
方法二:中序遍历 + 归并排序
方法一中并没有用到二叉搜索树本身的性质。如果我们对二叉搜索树进行中序遍历,就可以直接得到树中所有元素升序排序后的结果。因此我们可以对两棵树分别进行中序遍历,得到数组 v1 和 v2,它们分别存放了两棵树中的所有元素,且均已有序。在这之后,我们通过归并排序的方法对 v1 和 v2 进行排序,就可以得到最终的结果。
C++
class Solution {
public:
void dfs(TreeNode* node, vector<int>& v) {
if (!node) {
return;
}
dfs(node->left, v);
v.push_back(node->val);
dfs(node->right, v);
}
vector<int> getAllElements(TreeNode* root1, TreeNode* root2) {
vector<int> v1, v2;
dfs(root1, v1);
dfs(root2, v2);
vector<int> ans;
int i = 0, j = 0;
while (i < v1.size() || j < v2.size()) {
if (i < v1.size() && (j == v2.size() || v1[i] <= v2[j])) {
ans.push_back(v1[i++]);
}
else {
ans.push_back(v2[j++]);
}
}
return ans;
}
};
Python
class Solution:
def getAllElements(self, root1: TreeNode, root2: TreeNode) -> List[int]:
def dfs(node, v):
if not node:
return
dfs(node.left, v)
v.append(node.val)
dfs(node.right, v)
v1, v2 = list(), list()
dfs(root1, v1)
dfs(root2, v2)
ans, i, j = list(), 0, 0
while i < len(v1) or j < len(v2):
if i < len(v1) and (j == len(v2) or v1[i] <= v2[j]):
ans.append(v1[i])
i += 1
else:
ans.append(v2[j])
j += 1
return ans
复杂度分析
时间复杂度:O(M+N),其中 M 和 N 是两棵树中的节点个数。中序遍历的时间复杂度为 O(M+N),归并排序的时间复杂度同样为 O(M+N)。
空间复杂度:O(M+N)。我们需要使用额外的空间存储数组 v1 和 v2。
方法一 前序遍历+排序
先将两棵树的所有节点都放到一个list中,这里可以采用各种类型的遍历(前序、中序、后序、层次);
然后将list进行排序即可。
Java
public class Problem02 {
private List<Integer> ansList;
private void dfs(TreeNode root) {
if (root == null) {
return;
}
ansList.add(root.val);
dfs(root.left);
dfs(root.right);
}
public List<Integer> getAllElements(TreeNode root1, TreeNode root2) {
ansList = new ArrayList<>();
dfs(root1);
dfs(root2);
Collections.sort(ansList);
return ansList;
}
}
复杂度分析
时间复杂度:O(nlogn)。因为用到了排序。
空间复杂度:O(n)。开辟了一个m+n(跟n同量级)大小的list,m代表tree1的节点数、n代表tree2的节点数。
方法二 分别中序遍历+归并
前提:这两棵树都是二叉搜索树(BST),而一颗BST中序遍历的结果就是排好序的。
新建两个list,分别对两棵树进行中序遍历得到分别排好序的list1,list2;
已知list1和list2有序,那么将二者归并即可的到一个排好序的总list。(这里时间复杂度也就O(n))。
public class Problem02_1 {
private void dfs(TreeNode root, List<Integer> ansList) {
if (root == null) {
return;
}
dfs(root.left, ansList);
ansList.add(root.val);
dfs(root.right, ansList);
}
private List<Integer> merge(List<Integer> list1, List<Integer> list2) {
List<Integer> ansList = new ArrayList<>();
int size1 = list1.size();
int size2 = list2.size();
int index1, index2;
for (index1 = 0, index2 = 0; index1 < size1 && index2 < size2;) {
int num1 = list1.get(index1);
int num2 = list2.get(index2);
if (num1 < num2) {
ansList.add(num1);
index1++;
} else {
ansList.add(num2);
index2++;
}
}
while (index1 < size1) {
ansList.add(list1.get(index1++));
}
while (index2 < size2) {
ansList.add(list2.get(index2++));
}
return ansList;
}
public List<Integer> getAllElements(TreeNode root1, TreeNode root2) {
List<Integer> ansList1 = new ArrayList<>();
List<Integer> ansList2 = new ArrayList<>();
dfs(root1, ansList1);
dfs(root2, ansList2);
return merge(ansList1, ansList2);
}
}
复杂度分析
时间复杂度:O(n). 两次的中序遍历和一次的归并操作都是O(n)的时间复杂度。
空间复杂度:O(n).
方法三 遍历+优先队列
在树遍历的时候用一个优先队列(默认小根堆)来添加元素;
然后,将优先队列的元素逐个取出到list中即可。
Java
public class Problem02_2 {
private PriorityQueue<Integer> priorityQueue;
private void dfs(TreeNode root) {
if (root == null) {
return;
}
priorityQueue.offer(root.val);
dfs(root.left);
dfs(root.right);
}
public List<Integer> getAllElements(TreeNode root1, TreeNode root2) {
priorityQueue = new PriorityQueue<>();
dfs(root1);
dfs(root2);
List<Integer> ansList = new ArrayList<>();
while (!priorityQueue.isEmpty()) {
ansList.add(priorityQueue.poll());
}
return ansList;
}
}
复杂度分析
时间复杂度:O(nlogn)。因为优先队列插入和删除的操作的时间复杂度都是O(logn),然后有n节点,就是O(nlogn).
空间复杂度:O(n)
LeetCode——1305. 两棵二叉搜索树中的所有元素的更多相关文章
- Leetcode:1305. 两棵二叉搜索树中的所有元素
Leetcode:1305. 两棵二叉搜索树中的所有元素 Leetcode:1305. 两棵二叉搜索树中的所有元素 思路 BST树中序历遍有序. 利用双指针法可以在\(O(n)\)的复杂度内完成排序. ...
- [LeetCode] Delete Node in a BST 删除二叉搜索树中的节点
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...
- [LeetCode] 450. Delete Node in a BST 删除二叉搜索树中的节点
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Retur ...
- [LeetCode]230. 二叉搜索树中第K小的元素(BST)(中序遍历)、530. 二叉搜索树的最小绝对差(BST)(中序遍历)
题目230. 二叉搜索树中第K小的元素 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 题解 中序遍历BST,得到有序序列,返回有序序列的k-1号元素. 代 ...
- [LeetCode] Insert into a Binary Search Tree 二叉搜索树中插入结点
Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert t ...
- LeetCode:二叉搜索树中第K小的数【230】
LeetCode:二叉搜索树中第K小的数[230] 题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ...
- LeetCode:二叉搜索树中的搜索【700】
LeetCode:二叉搜索树中的搜索[700] 题目描述 给定二叉搜索树(BST)的根节点和一个值. 你需要在BST中找到节点值等于给定值的节点. 返回以该节点为根的子树. 如果节点不存在,则返回 N ...
- Leetcode 701. 二叉搜索树中的插入操作
题目链接 https://leetcode.com/problems/insert-into-a-binary-search-tree/description/ 题目描述 给定二叉搜索树(BST)的根 ...
- LeetCode 230. 二叉搜索树中第K小的元素(Kth Smallest Element in a BST)
230. 二叉搜索树中第K小的元素 230. Kth Smallest Element in a BST 题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的 ...
随机推荐
- 爬虫(十八):Scrapy框架(五) Scrapy通用爬虫
1. Scrapy通用爬虫 通过Scrapy,我们可以轻松地完成一个站点爬虫的编写.但如果抓取的站点量非常大,比如爬取各大媒体的新闻信息,多个Spider则可能包含很多重复代码. 如果我们将各个站点的 ...
- maven学习(三)-使用maven来创建项目
转自https://www.cnblogs.com/xdp-gacl/p/4240930.html maven作为一个高度自动化构建工具,本身提供了构建项目的功能,下面就来体验一下使用maven构建项 ...
- 常用模块-正则re
常用模块之正则模块 """ 正则表达式与re模块的关系 1.正则表达式是一门独立的技术,任何语言均可使用 2.python中要想使用正则表达式需要通过re模块 " ...
- ArrayList源码阅读笔记
ArrayList ArrayList继承自AbstractList抽象类,实现了RandomAccess, Cloneable, java.io.Serializable接口,其中RandomAcc ...
- POJ 2993:Emag eht htiw Em Pleh
Emag eht htiw Em Pleh Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64 ...
- soupui--替换整个case的url
添加新的URL 随便进入一个case的[REST]step,添加新的url 更换URL 添加完之后双击想要更换url的case,在弹出的窗口中点击URL按钮 在弹出的set endpoint窗口中选择 ...
- Spring中的控制反转和依赖注入
Spring中的控制反转和依赖注入 原文链接:https://www.cnblogs.com/xxzhuang/p/5948902.html 我们回顾一下计算机的发展史,从最初第一台计算机的占地面积达 ...
- 干货 | DRDS 与TiDB浅析
干货 | DRDS 与TiDB浅析 北京it爷们儿 京东云开发者社区 4月17日 在谈论数据库架构和数据库优化的时候,会常听到"分库分表"."分片".&quo ...
- Centos7下yum安装软件报错解决办法
Traceback (most recent call last): File "/usr/bin/yum", line 29, in yummain.user_main(sys. ...
- 吴裕雄--天生自然MySQL学习笔记:MySQL 事务
MySQL 事务主要用于处理操作量大,复杂度高的数据.比如说,在人员管理系统中,你删除一个人员,你即需要删除人员的基本资料,也要删除和该人员相关的信息,如信箱,文章等等,这样,这些数据库操作语句就构成 ...