Python程序中的线程操作(线程池)-concurrent模块

一、Python标准模块——concurrent.futures

官方文档:https://docs.python.org/dev/library/concurrent.futures.html

二、介绍

concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

Both implement the same interface, which is defined by the abstract Executor class.

三、基本方法

submit(fn, *args, **kwargs):异步提交任务

map(func, *iterables, timeout=None, chunksize=1):取代for循环submit的操作

shutdown(wait=True):相当于进程池的pool.close()+pool.join()操作

  • wait=True,等待池内所有任务执行完毕回收完资源后才继续
  • wait=False,立即返回,并不会等待池内的任务执行完毕
  • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
  • submit和map必须在shutdown之前

result(timeout=None):取得结果

add_done_callback(fn):回调函数

done():判断某一个线程是否完成

cancle():取消某个任务

四、ProcessPoolExecutor

介绍

The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned.

class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)

An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised.

#用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os, time,random
def task(n):
print('%s is runing' %os.getpid())
time.sleep(random.randint(1,3))
return n**2 if __name__ == '__main__': executor=ProcessPoolExecutor(max_workers=3) futures=[]
for i in range(11):
future=executor.submit(task,i)
futures.append(future)
executor.shutdown(True)
print('+++>')
for future in futures:
print(future.result())

五、ThreadPoolExecutor

介绍

ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.

class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')

An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor.

New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging.

#用法
与ProcessPoolExecutor相同
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from threading import currentThread
from multiprocessing import current_process
import time def task(i):
# print(f'{currentThread().name} 在执行任务{i}')
# 进程
print(f'进程 {current_process().name} 在执行任务 {i}')
time.sleep(2)
return i * 2 if __name__ == '__main__':
# 池子里只有四个线程
# pool = ThreadPoolExecutor(4) # 池子里面有4个线程 # 池子里有四个进程
pool = ProcessPoolExecutor(4) fu_list = [] for i in range(20):
# task任务要做20次, 4个进程负责做这个事
future = pool.submit(task, i) # task任务要做20次,4个进程负责做这个事情
fu_list.append(future) # 关闭池的入口, 会等待所有的任务执行完,结束阻塞
pool.shutdown()
for fu in fu_list:
print(fu.result())

六、map的用法

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor

import os, time, random

def task(n):
print('%s is runing' % os.getpid())
time.sleep(random.randint(1, 3))
return n ** 2 if __name__ == '__main__':
executor = ThreadPoolExecutor(max_workers=3) # for i in range(11):
# future=executor.submit(task,i) res = executor.map(task, range(1, 12)) # map取代了for+submit
executor.shutdown()
for r in res:
print(r)

54480 is runing

54480 is runing

54480 is runing

54480 is runing

54480 is runing

54480 is runing

54480 is runing

54480 is runing

54480 is runing

54480 is runing

54480 is runing

1

4

9

16

25

36

49

64

81

100

121

七、回调函数

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from multiprocessing import Pool
import requests
import json
import os def get_page(url):
print('<进程%s> get %s' %(os.getpid(),url))
respone=requests.get(url)
if respone.status_code == 200:
return {'url':url,'text':respone.text} def parse_page(res):
res=res.result()
print('<进程%s> parse %s' %(os.getpid(),res['url']))
parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
with open('db.txt','a') as f:
f.write(parse_res) if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.python.org',
'https://www.openstack.org',
'https://help.github.com/',
'http://www.sina.com.cn/'
] # p=Pool(3)
# for url in urls:
# p.apply_async(get_page,args=(url,),callback=pasrse_page)
# p.close()
# p.join() p=ProcessPoolExecutor(3)
for url in urls:
p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

Python程序中的线程操作(线程池)-concurrent模块的更多相关文章

  1. Python程序中的进程操作-进程池(multiprocess.Pool)

    目录 一.进程池 二.概念介绍--multiprocess.Pool 三.参数用法 四.主要方法 五.其他方法(了解) 六.代码实例--multiprocess.Pool 6.1 同步 6.2 异步 ...

  2. 在Python程序中的进程操作,multiprocess.Process模块

    在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起 ...

  3. python 全栈开发,Day38(在python程序中的进程操作,multiprocess.Process模块)

    昨日内容回顾 操作系统纸带打孔计算机批处理 —— 磁带 联机 脱机多道操作系统 —— 极大的提高了CPU的利用率 在计算机中 可以有超过一个进程 进程遇到IO的时候 切换给另外的进程使用CPU 数据隔 ...

  4. Python程序中的进程操作--—--开启多进程

    Python程序中的进程操作-----开启多进程 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创 ...

  5. Python程序中的进程操作-开启多进程(multiprocess.process)

    目录 一.multiprocess模块 二.multiprocess.process模块 三.process模块介绍 3.1 方法介绍 3.2 属性介绍 3.3 在windows中使用process模 ...

  6. 29、Python程序中的进程操作(multiprocess.process)

    一.multiprocess模块 multiprocess不是一个模块而是python中一个操作.管理进程的包. 子模块分为四个部分: 创建进程部分 进程同步部分 进程池部分 进程之间数据共享 二.m ...

  7. Python程序中的进程操作

    之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起来的python程序也是一个进程 ...

  8. Python程序中的进程操作-进程间通信(multiprocess.Queue)

    目录 一.进程间通信 二.队列 2.1 概念介绍--multiprocess.Queue 2.1.1 方法介绍 2.1.2 其他方法(了解) 三.代码实例--multiprocess.Queue 3. ...

  9. 在python程序中的进程操作

    multiprocess模块 multiprocess不是一个模块而是python中一个操作.管理进程的包. 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所 ...

  10. Python程序中的进程操作-进程间数据共享(multiprocess.Manager)

    目录 一.进程之间的数据共享 1.1 Manager模块介绍 1.2 Manager例子 一.进程之间的数据共享 展望未来,基于消息传递的并发编程是大势所趋 即便是使用线程,推荐做法也是将程序设计为大 ...

随机推荐

  1. docker安装出现"Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?"

    今天按照这个教程使用WSL安装docker时遇到了个问题: 使用命令:$ docker search mysql 出现:Cannot connect to the Docker daemon at u ...

  2. LeetCode刷题(持续更新ing……)

    准备刷题了!已经预见未来的日子是苦并快乐的了!虽然 N 年前刷过题,但现在感觉数据结构与算法的基本功快忘光了

  3. Android file内部存储

    通过file=openFileOutput()获得,将数据存储在data/data/+包名+files下面. 代码如下: MainActivity.java: import android.os.Bu ...

  4. Day1-T4

    原题目 Describe:注意是“两次及以上”而不是“两种及以上”!! code: #include<bits/stdc++.h> using namespace std; int k,m ...

  5. 1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))

    1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数log ...

  6. 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:Spring目录结构和基础JAR包介绍

    可以通过网址 http://repo.spring.io/simple/libs-release-local/org/springframework/spring/ 下载名称为 springframe ...

  7. python函数-装饰器

    python函数-装饰器 1.装饰器的原则--开放封闭原则 开放:对于添加新功能是开放的 封闭:对于修改原功能是封闭的 2.装饰器的作用 在不更改原函数调用方式的前提下对原函数添加新功能 3.装饰器的 ...

  8. 备份 分区表 mbr

    备份方法:   1.备份分区表信息 sudo fdisk -l >hda.txt  #分区表信息重定向输出到文件中 2.备份MBR linux@linux-desktop:~/ex$ sudo ...

  9. 工程日记之HelloSlide(2) : UITextView中如何根据给定的长宽,计算最合适的字体大小

    需求描述 一般的需求是将UITextview的大小自适应文本高度,会做出随文本内容增加,文字框不断增大的效果: 本文反其道而行之,在给定文字框大小的情况下:字数越多,字体越小: 需求来源: 考虑将文字 ...

  10. git push的时候.gitignore不起作用的解决方法

    问题的原因 这是因为在你添加.gitignore之前已经进行过push操作,有些文件已经纳入版本管理了. 解决方法 我们就应该先把本地缓存删除,然后再进行git的push,这样就不会出现忽略的文件了. ...